LoneStriker commited on
Commit
ce919da
·
verified ·
1 Parent(s): 4975dba

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: seallms
4
+ license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
5
+ language:
6
+ - en
7
+ - zh
8
+ - vi
9
+ - id
10
+ - th
11
+ - ms
12
+ - km
13
+ - lo
14
+ - my
15
+ - tl
16
+ tags:
17
+ - multilingual
18
+ - sea
19
+ ---
20
+
21
+ <p align="center">
22
+ <img src="seal_logo.png" width="200" />
23
+ </p>
24
+
25
+ # *SeaLLM-7B-v2* - Large Language Models for Southeast Asia
26
+
27
+ <p align="center">
28
+ <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank" rel="noopener"> 🤗 Tech Memo</a>
29
+ &nbsp;&nbsp;
30
+ <a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B" target="_blank" rel="noopener"> 🤗 DEMO</a>
31
+ &nbsp;&nbsp;
32
+ <a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a>
33
+ &nbsp;&nbsp;
34
+ <a href="https://arxiv.org/pdf/2312.00738.pdf" target="_blank" rel="noopener">Technical Report</a>
35
+ </p>
36
+
37
+ We introduce [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2), the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages 🇬🇧 🇨🇳 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇲🇲 🇵🇭. It is the most significant upgrade since [SeaLLM-13B](https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat), with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc.
38
+
39
+ ### Highlights
40
+ * [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves the **7B-SOTA** on the **GSM8K** task with **78.2** score and outperforms GPT-3.5 in many GSM8K-translated tasks in SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭) as well as MGSM (🇨🇳 🇹🇭). It also surpasses GPT-3.5 in MATH for Thai 🇹🇭.
41
+ * It scores competitively against GPT-3.5 in many zero-shot commonsense benchmark, with **82.5, 68.3, 80.9** scores on Arc-C, Winogrande, and Hellaswag.
42
+ * It achieves **7.54** score on the 🇬🇧 **MT-bench**, it ranks 3rd place on the leaderboard for 7B category and is the most outperforming multilingual model.
43
+ * It scores **45.46** on the VMLU benchmark for Vietnamese 🇻🇳, and is the only open-source multilingual model that can be competitive to monolingual models ([Vistral-7B](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)) of similar sizes.
44
+
45
+
46
+ ### Release and DEMO
47
+
48
+ - DEMO: [SeaLLMs/SeaLLM-7B](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B).
49
+ - Technical report: [Arxiv: SeaLLMs - Large Language Models for Southeast Asia](https://arxiv.org/pdf/2312.00738.pdf).
50
+ - Model weights: [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2).
51
+
52
+
53
+ <blockquote style="color:red">
54
+ <p><strong style="color: red">Terms of Use and License</strong>:
55
+ By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/edit/main/LICENSE" target="_blank" rel="noopener">SeaLLMs Terms Of Use</a>.
56
+ </blockquote>
57
+
58
+ > **Disclaimer**:
59
+ > We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation.
60
+ > Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
61
+ > In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.
62
+
63
+ > The logo was generated by DALL-E 3.
64
+
65
+
66
+ ### What's new since SeaLLM-13B-v1 and SeaLLM-7B-v1?
67
+
68
+ * SeaLLM-7B-v2 is continue-pretrained from [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) and underwent carefully designed tuning with focus in reasoning.
69
+
70
+
71
+ ## Evaluation
72
+
73
+
74
+ ### Zero-shot Multilingual Math Reasoning
75
+
76
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves with **78.2** score on the GSM8K, making it the **state of the art** in the realm of 7B models. It also outperforms GPT-3.5 in the same GSM8K benchmark as translated into SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭). [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also surpasses GPT-3.5 on the Thai-translated MATH benchmark, with **22.4** vs 18.1 scores.
77
+
78
+ ![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png)
79
+
80
+
81
+ <details>
82
+ <summary>See details on English and translated GSM8K and MATH</summary>
83
+ <br>
84
+
85
+ | Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
86
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
87
+ | GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
88
+ | Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6
89
+ | Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | |
90
+ | SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
91
+
92
+ </details>
93
+
94
+ #### Zero-shot MGSM
95
+
96
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Zh and Th.
97
+
98
+ | Model | MGSM-Zh | MGSM-Th
99
+ |-----| ----- | ---
100
+ | ChatGPT (reported) | 61.2* | 47.2*
101
+ | Qwen-14B-chat | 59.6 | 28
102
+ | SeaLLM-7B-v2 | **64.8** | **62.4**
103
+
104
+
105
+ ### Zero-shot Commonsense Reasoning
106
+
107
+ We compare [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) with ChatGPT and Mistral-7B-instruct on various zero-shot commonsense benchmarks (Arc-Challenge, Winogrande and Hellaswag). We use the 2-stage technique in [(Kojima et al., 2023)](https://arxiv.org/pdf/2205.11916.pdf) to grab the answer. Note that we **DID NOT** use "Let's think step-by-step" to invoke explicit CoT.
108
+
109
+ | Model | Arc-Challenge | Winogrande | Hellaswag
110
+ |-----| ----- | --- | -- |
111
+ | ChatGPT (reported) | 84.6* | 66.8* | 72.0*
112
+ | ChatGPT (reproduced) | 84.1 | 63.1 | 79.5
113
+ | Mistral-7B-Instruct | 68.1 | 56.4 | 45.6
114
+ | SeaLLM-7B-v2 | 82.5 | 68.3 | 80.9
115
+
116
+
117
+ ### Multilingual World Knowledge
118
+
119
+
120
+ We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.
121
+
122
+ | Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
123
+ |-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
124
+ | ChatGPT | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
125
+ |-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
126
+ | SeaLLM-13B | Multi | 52.78 | 62.69 | 44.50 | 46.45 | | 39.28 | 36.39
127
+ | Vistral-7B | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
128
+ | SeaLLM-7B-v2 | Multi | 60.72 | 70.91 | 55.43 | 51.15 | 45.46 | 42.25 | 35.52
129
+
130
+
131
+
132
+ ### MT-Bench
133
+
134
+ On the English [MT-bench](https://arxiv.org/abs/2306.05685) metric, SeaLLM-7B-v2 achieves **7.54** score on the MT-bench (3rd place on the leaderboard for 7B category), outperforms many 70B models and is arguably the only one that handles 10 SEA languages.
135
+
136
+ Refer to [mt_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/mt_bench/seallm_7b_v2.jsonl) for the MT-bench predictions of SeaLLM-7B-v2.
137
+
138
+ | Model | Access | Langs | MT-Bench
139
+ | --- | --- | --- | --- |
140
+ | GPT-4-turbo | closed | multi | 9.32
141
+ | GPT-4-0613 | closed | multi | 9.18
142
+ | Mixtral-8x7b (46B) | open | multi | 8.3
143
+ | Starling-LM-7B-alpha | open | mono (en) | 8.0
144
+ | OpenChat-3.5-7B | open | mono (en) | 7.81
145
+ | **SeaLLM-7B-v2** | **open** | **multi (10+)** | **7.54**
146
+ | [Qwen-14B](https://huggingface.co/Qwen/Qwen-14B-Chat) | open | multi | 6.96
147
+ | [Llama-2-70B](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | open | mono (en) | 6.86
148
+ | Mistral-7B-instuct | open | mono (en) | 6.84
149
+
150
+
151
+ ### Sea-Bench
152
+
153
+ Similar to MT-Bench, [Sea-bench](https://huggingface.co/datasets/SeaLLMs/Sea-bench) is a set of categorized instruction test sets to measure models' ability as an assistant that is specifically focused on 9 SEA languages, including non-Latin low-resource languages.
154
+
155
+ As shown, the huge improvements come from math-reasoning, reaching GPT-3.5 level of performance.
156
+
157
+ ![fig_sea_bench_side_by_side.png](fig_sea_bench_side_by_side.png)
158
+
159
+ Refer to [sea_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/sea_bench/seallm_7b_v2.jsonl) for the Sea-bench predictions of SeaLLM-7B-v2.
160
+
161
+
162
+
163
+ ### Usage
164
+
165
+ #### Instruction format
166
+
167
+ ```python
168
+ prompt = """<|im_start|>system
169
+ You are a helpful assistant.</s>
170
+ <|im_start|>user
171
+ Hello world</s>
172
+ <|im_start|>assistant
173
+ Hi there, how can I help?</s>
174
+
175
+ # ! ENSURE 1 and only 1 bos `<s>` at the beginning of sequence
176
+ print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)))
177
+
178
+ ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁', '<0x0A>', '<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁', '<0x0A>', '<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '?', '</s>', '▁', '<0x0A>']
179
+ """
180
+ ```
181
+
182
+ #### Using transformers's chat_template
183
+ ```python
184
+
185
+ from transformers import AutoModelForCausalLM, AutoTokenizer
186
+
187
+ device = "cuda" # the device to load the model onto
188
+
189
+ model = AutoModelForCausalLM.from_pretrained("SeaLLMs/SeaLLM-7B-v2", torch_dtype=torch.bfloat16, device_map=device)
190
+ tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLM-7B-v2")
191
+
192
+ messages = [
193
+ {"role": "user", "content": "Hello world"},
194
+ {"role": "assistant", "content": "Hi there, how can I help you today?"},
195
+ {"role": "user", "content": "Explain general relativity in details."}
196
+ ]
197
+
198
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
199
+ print(tokenizer.convert_ids_to_tokens(encodeds[0]))
200
+ # ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁', '<0x0A>', '<', '|', 'im ....
201
+
202
+ model_inputs = encodeds.to(device)
203
+ model.to(device)
204
+
205
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id)
206
+ decoded = tokenizer.batch_decode(generated_ids)
207
+ print(decoded[0])
208
+
209
+ ```
210
+
211
+ #### Using vLLM
212
+
213
+ ```python
214
+ from vllm import LLM, SamplingParams
215
+ TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
216
+ TURN_PREFIX = "<|im_start|>{role}\n"
217
+
218
+ def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None):
219
+ # conversations: list of dict with key `role` and `content` (openai format)
220
+ if conversations[0]['role'] != 'system' and system_prompt is not None:
221
+ conversations = [{"role": "system", "content": system_prompt}] + conversations
222
+ text = ''
223
+ for turn_id, turn in enumerate(conversations):
224
+ prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
225
+ text += prompt
226
+ if add_assistant_prefix:
227
+ prompt = TURN_PREFIX.format(role='assistant')
228
+ text += prompt
229
+ return text
230
+
231
+ sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['</s>', '<|im_start|>'])
232
+ llm = LLM("SeaLLMs/SeaLLM-7B-v2", dtype="bfloat16")
233
+
234
+ message = "Explain general relativity in details."
235
+ prompt = seallm_chat_convo_format(message, True)
236
+ gen = llm.generate(prompt, sampling_params)
237
+
238
+ print(gen[0].outputs[0].text)
239
+ ```
240
+
241
+
242
+ ## Acknowledgement to Our Linguists
243
+
244
+ We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.
245
+
246
+ ## Citation
247
+
248
+ If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [[email protected]](mailto:[email protected])
249
+
250
+ **Author list and order will change!**
251
+
252
+ * `*` and `^` are equal contributions.
253
+
254
+ ```
255
+ @article{damonlpsg2023seallm,
256
+ author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*,
257
+ Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang,
258
+ Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang,
259
+ Chaoqun Liu, Hang Zhang, Lidong Bing},
260
+ title = {SeaLLMs - Large Language Models for Southeast Asia},
261
+ year = 2023,
262
+ Eprint = {arXiv:2312.00738},
263
+ }
264
+ ```
265
+
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "seallm_dpo",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 10000.0,
20
+ "sliding_window": 4096,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.37.0.dev0",
24
+ "use_cache": true,
25
+ "vocab_size": 48384
26
+ }
fig_sea_bench_side_by_side.png ADDED
fig_sea_math_side_by_side.png ADDED
output.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdae38d9c7273b01aac5c897965b2e04c42ecb10ed52afd63f6dcc43bcceb441
3
+ size 3170900464
seal_logo.png ADDED
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d88bdadaa2a065aa7c6e18a4b5999ce4c76cec14d9fea882102e7b4931d7ef0
3
+ size 779539
tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "<unk>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false,
42
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '</s>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
43
+ }