LoneStriker
commited on
Upload folder using huggingface_hub
Browse files- README.md +78 -0
- added_tokens.json +5 -0
- all_results.json +21 -0
- config.json +26 -0
- eval_results.json +16 -0
- generation_config.json +6 -0
- output.safetensors +3 -0
- pytorch_model.bin.index.json +298 -0
- special_tokens_map.json +14 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +45 -0
- train_results.json +8 -0
- trainer_state.json +1488 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
---
|
7 |
+
|
8 |
+
### Dataset:
|
9 |
+
Training dataset: [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset)
|
10 |
+
|
11 |
+
We utilize ONLY the prompts from [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized); **no external LLM responses used**.
|
12 |
+
|
13 |
+
### Methodology:
|
14 |
+
1. Generate five response variations for each prompt from a subset of 20,000 using the LLM - to start, we used [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
|
15 |
+
2. Apply [PairRM](https://huggingface.co/llm-blender/PairRM) for response reranking.
|
16 |
+
3. Update the LLM by applying Direct Preference Optimization (DPO) on the top (chosen) and bottom (rejected) responses.
|
17 |
+
4. Use this LLM as the base model for the next iteration, repeating three times in total.
|
18 |
+
|
19 |
+
This overview provides a high-level summary of our approach.
|
20 |
+
We plan to release more detailed results and findings in the coming weeks on the [Snorkel blog.](https://snorkel.ai/blog/)
|
21 |
+
|
22 |
+
### Training recipe:
|
23 |
+
- The provided data is formatted to be compatible with the Hugging Face's [Zephyr recipe](https://github.com/huggingface/alignment-handbook/tree/main/recipes/zephyr-7b-beta).
|
24 |
+
We executed the n_th DPO iteration using the "train/test_iteration_{n}".
|
25 |
+
|
26 |
+
### Key Premises:
|
27 |
+
- **Specialization Requirement**: For most enterprise use cases, using LLMs "off-the-shelf" falls short of production quality, necessitating additional fine-tuning and alignment.
|
28 |
+
- **Ease of Model Building**: Creating ranking/scoring/classification models is simpler than developing high-quality, manually annotated datasets for long-form responses.
|
29 |
+
- **Alignment Recipe**: Using smaller but specialized teacher models (reward models) can incrementally align LLMs towards specific axes.
|
30 |
+
|
31 |
+
### Applications:
|
32 |
+
Unlike our customers, who have very specific use cases to align LLMs to,
|
33 |
+
the AlpacaEval 2.0 leaderboard measures the ability of LLMS to follow user instructions.
|
34 |
+
With this demonstration, we focus on the general approach to alignment.
|
35 |
+
Thus, we use a general-purpose reward model - the performant [PairRM model](https://huggingface.co/llm-blender/PairRM).
|
36 |
+
We use the [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) model as our base LLM.
|
37 |
+
|
38 |
+
For interest in building your **specialized internal reward models
|
39 |
+
that reflect your enterprises' needs**, please contact the Snorkel AI team or consider attending our
|
40 |
+
[**Enterprise LLM Summit: Building GenAI with Your Data on January 25, 2024**](https://snorkel.ai/event/enterprise-llm-summit/)
|
41 |
+
to learn more about "Programmatically scaling human preferences and alignment in GenAI".
|
42 |
+
|
43 |
+
### Result:
|
44 |
+
On [**Alpaca-Eval 2.0**](https://tatsu-lab.github.io/alpaca_eval/):
|
45 |
+
- The base model: [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) scored **14.72**.
|
46 |
+
|
47 |
+
After applying the above methodology:
|
48 |
+
- This model scored **30.22** - ranked 3rd and the highest for an open-source base model at the time of publication.
|
49 |
+
- When post-processing the model outputs with PairRM-best-of-16, which involved generating 16 responses and selecting the highest-scoring response by PairRM, we scored **34.86** - ranked 2nd.
|
50 |
+
The best model on the leaderboard is "gpt-4-turbo", which is also the judge of optimal responses.
|
51 |
+
|
52 |
+
We recognize that the Alpaca-Eval 2.0 benchmark does not entirely capture the full range of capabilities and performances of LLMs.
|
53 |
+
However, in our current work, where the goal is to align with general "human preferences," Alpaca-Eval 2.0 serves as a suitable and representative benchmark.
|
54 |
+
Moving forward, we anticipate further contributions from the community regarding new alignment axes, and conduct evaluations using other appropriate benchmarks.
|
55 |
+
|
56 |
+
The Alpaca-Eval 2.0 evaluator, "gpt-4-turbo," exhibits a bias towards longer responses.
|
57 |
+
This tendency might also be present in our chosen reward model, resulting in our model producing lengthier responses after DPO iterations,
|
58 |
+
which can be among the factors to our higher ranks on the leaderboard.
|
59 |
+
Future work could include measures to control response length and other relevant metrics.
|
60 |
+
|
61 |
+
### Limitations:
|
62 |
+
The model is a quick demonstration that the LLMs can be programmatically aligned using smaller specialized reward models.
|
63 |
+
It does not have any moderation mechanisms.
|
64 |
+
We look forward to continuing to engage with the research community and our customers exploring optimal methods for getting models to respect guardrails,
|
65 |
+
allowing for deployment in environments requiring moderated outputs.
|
66 |
+
|
67 |
+
### Contemporary Work and Acknowledgements:
|
68 |
+
- The Mistral AI Team for developing and releasing the advanced Mistral-7B-Instruct-v0.2 model.
|
69 |
+
- The author of the [Direct Preference Optimization paper](https://arxiv.org/abs/2305.18290) for the innovative approach
|
70 |
+
- The author of the [Pairwise Reward Model for LLMs paper](https://arxiv.org/abs/2306.02561) for the powerful general-purpose reward model
|
71 |
+
- The HuggingFace team for the DPO implementation under [The Alignment Handbook](https://github.com/huggingface/alignment-handbook)
|
72 |
+
- We would also like to acknowledge contemporary work published independently on arXiv on 2024-01-18 by Meta & NYU (Yuan, et al) in a paper called [Self-Rewarding Language Models](https://arxiv.org/abs/2401.10020),
|
73 |
+
which proposes a similar general approach for creating alignment pairs from a larger set of candidate responses, but using the LLM as the reward model.
|
74 |
+
While this may work for general-purpose models, our experience has shown that task-specific reward models guided by SMEs are necessary for most
|
75 |
+
enterprise applications of LLMs for specific use cases, which is why we focus on the use of external reward models.
|
76 |
+
|
77 |
+
### The Snorkel AI Team
|
78 |
+
Hoang Tran, Chris Glaze, Braden Hancock
|
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 2,
|
3 |
+
"<s>": 1,
|
4 |
+
"<unk>": 0
|
5 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_logits/chosen": -2.10288143157959,
|
4 |
+
"eval_logits/rejected": -2.1299264430999756,
|
5 |
+
"eval_logps/chosen": -289.6983642578125,
|
6 |
+
"eval_logps/rejected": -310.9796142578125,
|
7 |
+
"eval_loss": 1.0245678424835205,
|
8 |
+
"eval_rewards/accuracies": 0.579365074634552,
|
9 |
+
"eval_rewards/chosen": -5.276275157928467,
|
10 |
+
"eval_rewards/margins": 0.5837584733963013,
|
11 |
+
"eval_rewards/rejected": -5.8600335121154785,
|
12 |
+
"eval_runtime": 135.2014,
|
13 |
+
"eval_samples": 1000,
|
14 |
+
"eval_samples_per_second": 7.396,
|
15 |
+
"eval_steps_per_second": 0.466,
|
16 |
+
"train_loss": 0.23198359412724215,
|
17 |
+
"train_runtime": 18849.1473,
|
18 |
+
"train_samples": 19958,
|
19 |
+
"train_samples_per_second": 3.176,
|
20 |
+
"train_steps_per_second": 0.05
|
21 |
+
}
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./models_dpo/snorkel_model_0117_20k_mistral_v02_llm_blender_v5",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 1000000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.34.0",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_logits/chosen": -2.10288143157959,
|
4 |
+
"eval_logits/rejected": -2.1299264430999756,
|
5 |
+
"eval_logps/chosen": -289.6983642578125,
|
6 |
+
"eval_logps/rejected": -310.9796142578125,
|
7 |
+
"eval_loss": 1.0245678424835205,
|
8 |
+
"eval_rewards/accuracies": 0.579365074634552,
|
9 |
+
"eval_rewards/chosen": -5.276275157928467,
|
10 |
+
"eval_rewards/margins": 0.5837584733963013,
|
11 |
+
"eval_rewards/rejected": -5.8600335121154785,
|
12 |
+
"eval_runtime": 135.2014,
|
13 |
+
"eval_samples": 1000,
|
14 |
+
"eval_samples_per_second": 7.396,
|
15 |
+
"eval_steps_per_second": 0.466
|
16 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.34.0"
|
6 |
+
}
|
output.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08ca791db4644dde329af99a00b24de85c76a7dd757eff237965140387c68ea1
|
3 |
+
size 4733607488
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483464192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
242 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
297 |
+
}
|
298 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>"
|
6 |
+
],
|
7 |
+
"bos_token": "<s>",
|
8 |
+
"cls_token": "[CLS]",
|
9 |
+
"eos_token": "</s>",
|
10 |
+
"mask_token": "[MASK]",
|
11 |
+
"pad_token": "</s>",
|
12 |
+
"sep_token": "[SEP]",
|
13 |
+
"unk_token": "<unk>"
|
14 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"additional_special_tokens": [
|
29 |
+
"<unk>",
|
30 |
+
"<s>",
|
31 |
+
"</s>"
|
32 |
+
],
|
33 |
+
"bos_token": "<s>",
|
34 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "</s>",
|
37 |
+
"legacy": true,
|
38 |
+
"model_max_length": 2048,
|
39 |
+
"pad_token": "</s>",
|
40 |
+
"sp_model_kwargs": {},
|
41 |
+
"spaces_between_special_tokens": false,
|
42 |
+
"tokenizer_class": "LlamaTokenizer",
|
43 |
+
"unk_token": "<unk>",
|
44 |
+
"use_default_system_prompt": false
|
45 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.23198359412724215,
|
4 |
+
"train_runtime": 18849.1473,
|
5 |
+
"train_samples": 19958,
|
6 |
+
"train_samples_per_second": 3.176,
|
7 |
+
"train_steps_per_second": 0.05
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1488 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 936,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 5.3191489361702125e-09,
|
14 |
+
"logits/chosen": -2.2888386249542236,
|
15 |
+
"logits/rejected": -2.347537040710449,
|
16 |
+
"logps/chosen": -240.19537353515625,
|
17 |
+
"logps/rejected": -224.4659423828125,
|
18 |
+
"loss": 0.6931,
|
19 |
+
"rewards/accuracies": 0.0,
|
20 |
+
"rewards/chosen": 0.0,
|
21 |
+
"rewards/margins": 0.0,
|
22 |
+
"rewards/rejected": 0.0,
|
23 |
+
"step": 1
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.03,
|
27 |
+
"learning_rate": 5.3191489361702123e-08,
|
28 |
+
"logits/chosen": -2.2613658905029297,
|
29 |
+
"logits/rejected": -2.2750418186187744,
|
30 |
+
"logps/chosen": -243.42933654785156,
|
31 |
+
"logps/rejected": -246.80438232421875,
|
32 |
+
"loss": 0.6983,
|
33 |
+
"rewards/accuracies": 0.4444444477558136,
|
34 |
+
"rewards/chosen": -0.004907915368676186,
|
35 |
+
"rewards/margins": -0.0037050736136734486,
|
36 |
+
"rewards/rejected": -0.0012028426863253117,
|
37 |
+
"step": 10
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.06,
|
41 |
+
"learning_rate": 1.0638297872340425e-07,
|
42 |
+
"logits/chosen": -2.207406997680664,
|
43 |
+
"logits/rejected": -2.1862308979034424,
|
44 |
+
"logps/chosen": -252.49658203125,
|
45 |
+
"logps/rejected": -264.63861083984375,
|
46 |
+
"loss": 0.6883,
|
47 |
+
"rewards/accuracies": 0.606249988079071,
|
48 |
+
"rewards/chosen": -0.01405362505465746,
|
49 |
+
"rewards/margins": 0.04791956767439842,
|
50 |
+
"rewards/rejected": -0.06197319179773331,
|
51 |
+
"step": 20
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.1,
|
55 |
+
"learning_rate": 1.5957446808510638e-07,
|
56 |
+
"logits/chosen": -2.1290104389190674,
|
57 |
+
"logits/rejected": -2.124718189239502,
|
58 |
+
"logps/chosen": -265.79962158203125,
|
59 |
+
"logps/rejected": -293.8382263183594,
|
60 |
+
"loss": 0.6817,
|
61 |
+
"rewards/accuracies": 0.581250011920929,
|
62 |
+
"rewards/chosen": -0.23290427029132843,
|
63 |
+
"rewards/margins": 0.05236431211233139,
|
64 |
+
"rewards/rejected": -0.2852686047554016,
|
65 |
+
"step": 30
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.13,
|
69 |
+
"learning_rate": 2.127659574468085e-07,
|
70 |
+
"logits/chosen": -2.1210882663726807,
|
71 |
+
"logits/rejected": -2.1071760654449463,
|
72 |
+
"logps/chosen": -239.9654083251953,
|
73 |
+
"logps/rejected": -246.32162475585938,
|
74 |
+
"loss": 0.6723,
|
75 |
+
"rewards/accuracies": 0.5874999761581421,
|
76 |
+
"rewards/chosen": -0.28943145275115967,
|
77 |
+
"rewards/margins": 0.12118977308273315,
|
78 |
+
"rewards/rejected": -0.4106212556362152,
|
79 |
+
"step": 40
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.16,
|
83 |
+
"learning_rate": 2.659574468085106e-07,
|
84 |
+
"logits/chosen": -2.151090145111084,
|
85 |
+
"logits/rejected": -2.1575913429260254,
|
86 |
+
"logps/chosen": -243.2239990234375,
|
87 |
+
"logps/rejected": -283.3126220703125,
|
88 |
+
"loss": 0.6911,
|
89 |
+
"rewards/accuracies": 0.512499988079071,
|
90 |
+
"rewards/chosen": -0.30816999077796936,
|
91 |
+
"rewards/margins": 0.1214941143989563,
|
92 |
+
"rewards/rejected": -0.42966407537460327,
|
93 |
+
"step": 50
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.19,
|
97 |
+
"learning_rate": 3.1914893617021275e-07,
|
98 |
+
"logits/chosen": -2.2355575561523438,
|
99 |
+
"logits/rejected": -2.241624355316162,
|
100 |
+
"logps/chosen": -225.8336181640625,
|
101 |
+
"logps/rejected": -239.73583984375,
|
102 |
+
"loss": 0.641,
|
103 |
+
"rewards/accuracies": 0.512499988079071,
|
104 |
+
"rewards/chosen": -0.4416503310203552,
|
105 |
+
"rewards/margins": 0.24247512221336365,
|
106 |
+
"rewards/rejected": -0.684125542640686,
|
107 |
+
"step": 60
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.22,
|
111 |
+
"learning_rate": 3.7234042553191484e-07,
|
112 |
+
"logits/chosen": -2.284141778945923,
|
113 |
+
"logits/rejected": -2.271517515182495,
|
114 |
+
"logps/chosen": -247.878173828125,
|
115 |
+
"logps/rejected": -271.75543212890625,
|
116 |
+
"loss": 0.6634,
|
117 |
+
"rewards/accuracies": 0.5687500238418579,
|
118 |
+
"rewards/chosen": -0.4251589775085449,
|
119 |
+
"rewards/margins": 0.20249144732952118,
|
120 |
+
"rewards/rejected": -0.6276503801345825,
|
121 |
+
"step": 70
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.26,
|
125 |
+
"learning_rate": 4.25531914893617e-07,
|
126 |
+
"logits/chosen": -2.1530141830444336,
|
127 |
+
"logits/rejected": -2.1263160705566406,
|
128 |
+
"logps/chosen": -250.94882202148438,
|
129 |
+
"logps/rejected": -283.70452880859375,
|
130 |
+
"loss": 0.7221,
|
131 |
+
"rewards/accuracies": 0.606249988079071,
|
132 |
+
"rewards/chosen": -0.5067945122718811,
|
133 |
+
"rewards/margins": 0.3924552798271179,
|
134 |
+
"rewards/rejected": -0.8992497324943542,
|
135 |
+
"step": 80
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.29,
|
139 |
+
"learning_rate": 4.787234042553192e-07,
|
140 |
+
"logits/chosen": -2.2971713542938232,
|
141 |
+
"logits/rejected": -2.2914767265319824,
|
142 |
+
"logps/chosen": -239.848388671875,
|
143 |
+
"logps/rejected": -261.0388488769531,
|
144 |
+
"loss": 0.6921,
|
145 |
+
"rewards/accuracies": 0.59375,
|
146 |
+
"rewards/chosen": -0.36695146560668945,
|
147 |
+
"rewards/margins": 0.7086008787155151,
|
148 |
+
"rewards/rejected": -1.0755524635314941,
|
149 |
+
"step": 90
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.32,
|
153 |
+
"learning_rate": 4.96437054631829e-07,
|
154 |
+
"logits/chosen": -2.2555811405181885,
|
155 |
+
"logits/rejected": -2.25207781791687,
|
156 |
+
"logps/chosen": -267.49615478515625,
|
157 |
+
"logps/rejected": -275.76678466796875,
|
158 |
+
"loss": 0.6493,
|
159 |
+
"rewards/accuracies": 0.625,
|
160 |
+
"rewards/chosen": -0.6560766100883484,
|
161 |
+
"rewards/margins": 0.7053524851799011,
|
162 |
+
"rewards/rejected": -1.361429214477539,
|
163 |
+
"step": 100
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.32,
|
167 |
+
"eval_logits/chosen": -2.28631591796875,
|
168 |
+
"eval_logits/rejected": -2.316732883453369,
|
169 |
+
"eval_logps/chosen": -247.2499237060547,
|
170 |
+
"eval_logps/rejected": -264.13714599609375,
|
171 |
+
"eval_loss": 0.7535801529884338,
|
172 |
+
"eval_rewards/accuracies": 0.5277777910232544,
|
173 |
+
"eval_rewards/chosen": -1.031434416770935,
|
174 |
+
"eval_rewards/margins": 0.1443558931350708,
|
175 |
+
"eval_rewards/rejected": -1.1757903099060059,
|
176 |
+
"eval_runtime": 136.5011,
|
177 |
+
"eval_samples_per_second": 7.326,
|
178 |
+
"eval_steps_per_second": 0.462,
|
179 |
+
"step": 100
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.35,
|
183 |
+
"learning_rate": 4.904988123515439e-07,
|
184 |
+
"logits/chosen": -2.3735289573669434,
|
185 |
+
"logits/rejected": -2.3574609756469727,
|
186 |
+
"logps/chosen": -258.567138671875,
|
187 |
+
"logps/rejected": -265.116943359375,
|
188 |
+
"loss": 0.7214,
|
189 |
+
"rewards/accuracies": 0.5062500238418579,
|
190 |
+
"rewards/chosen": -0.645125687122345,
|
191 |
+
"rewards/margins": 0.558975338935852,
|
192 |
+
"rewards/rejected": -1.2041009664535522,
|
193 |
+
"step": 110
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.38,
|
197 |
+
"learning_rate": 4.845605700712589e-07,
|
198 |
+
"logits/chosen": -2.2169833183288574,
|
199 |
+
"logits/rejected": -2.2219901084899902,
|
200 |
+
"logps/chosen": -236.5016632080078,
|
201 |
+
"logps/rejected": -263.465576171875,
|
202 |
+
"loss": 0.7608,
|
203 |
+
"rewards/accuracies": 0.59375,
|
204 |
+
"rewards/chosen": -0.8542020916938782,
|
205 |
+
"rewards/margins": 0.4452931880950928,
|
206 |
+
"rewards/rejected": -1.2994953393936157,
|
207 |
+
"step": 120
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.42,
|
211 |
+
"learning_rate": 4.786223277909738e-07,
|
212 |
+
"logits/chosen": -2.2680552005767822,
|
213 |
+
"logits/rejected": -2.2671051025390625,
|
214 |
+
"logps/chosen": -265.2757568359375,
|
215 |
+
"logps/rejected": -281.46087646484375,
|
216 |
+
"loss": 0.6982,
|
217 |
+
"rewards/accuracies": 0.5874999761581421,
|
218 |
+
"rewards/chosen": -0.42591819167137146,
|
219 |
+
"rewards/margins": 1.4877907037734985,
|
220 |
+
"rewards/rejected": -1.9137089252471924,
|
221 |
+
"step": 130
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.45,
|
225 |
+
"learning_rate": 4.7268408551068883e-07,
|
226 |
+
"logits/chosen": -2.3235602378845215,
|
227 |
+
"logits/rejected": -2.331632614135742,
|
228 |
+
"logps/chosen": -277.58642578125,
|
229 |
+
"logps/rejected": -309.63006591796875,
|
230 |
+
"loss": 0.6538,
|
231 |
+
"rewards/accuracies": 0.6312500238418579,
|
232 |
+
"rewards/chosen": -1.0361998081207275,
|
233 |
+
"rewards/margins": 1.2754342555999756,
|
234 |
+
"rewards/rejected": -2.311634063720703,
|
235 |
+
"step": 140
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.48,
|
239 |
+
"learning_rate": 4.667458432304038e-07,
|
240 |
+
"logits/chosen": -2.242255449295044,
|
241 |
+
"logits/rejected": -2.247087001800537,
|
242 |
+
"logps/chosen": -279.643310546875,
|
243 |
+
"logps/rejected": -306.5362243652344,
|
244 |
+
"loss": 0.7123,
|
245 |
+
"rewards/accuracies": 0.5375000238418579,
|
246 |
+
"rewards/chosen": -1.3043805360794067,
|
247 |
+
"rewards/margins": 1.866286039352417,
|
248 |
+
"rewards/rejected": -3.1706669330596924,
|
249 |
+
"step": 150
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.51,
|
253 |
+
"learning_rate": 4.6080760095011875e-07,
|
254 |
+
"logits/chosen": -2.4138083457946777,
|
255 |
+
"logits/rejected": -2.403261661529541,
|
256 |
+
"logps/chosen": -267.54046630859375,
|
257 |
+
"logps/rejected": -311.9237060546875,
|
258 |
+
"loss": 0.7048,
|
259 |
+
"rewards/accuracies": 0.6625000238418579,
|
260 |
+
"rewards/chosen": -0.7491146326065063,
|
261 |
+
"rewards/margins": 1.4739110469818115,
|
262 |
+
"rewards/rejected": -2.2230257987976074,
|
263 |
+
"step": 160
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.54,
|
267 |
+
"learning_rate": 4.548693586698337e-07,
|
268 |
+
"logits/chosen": -2.394935131072998,
|
269 |
+
"logits/rejected": -2.387144088745117,
|
270 |
+
"logps/chosen": -238.01992797851562,
|
271 |
+
"logps/rejected": -249.9500274658203,
|
272 |
+
"loss": 0.6621,
|
273 |
+
"rewards/accuracies": 0.5874999761581421,
|
274 |
+
"rewards/chosen": -0.7305070161819458,
|
275 |
+
"rewards/margins": 1.7976157665252686,
|
276 |
+
"rewards/rejected": -2.528122663497925,
|
277 |
+
"step": 170
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.58,
|
281 |
+
"learning_rate": 4.4893111638954866e-07,
|
282 |
+
"logits/chosen": -2.358888626098633,
|
283 |
+
"logits/rejected": -2.3674557209014893,
|
284 |
+
"logps/chosen": -257.3042907714844,
|
285 |
+
"logps/rejected": -276.6517028808594,
|
286 |
+
"loss": 0.7177,
|
287 |
+
"rewards/accuracies": 0.675000011920929,
|
288 |
+
"rewards/chosen": -1.2033367156982422,
|
289 |
+
"rewards/margins": 1.2791545391082764,
|
290 |
+
"rewards/rejected": -2.4824917316436768,
|
291 |
+
"step": 180
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.61,
|
295 |
+
"learning_rate": 4.429928741092636e-07,
|
296 |
+
"logits/chosen": -2.336920738220215,
|
297 |
+
"logits/rejected": -2.31685733795166,
|
298 |
+
"logps/chosen": -249.4643096923828,
|
299 |
+
"logps/rejected": -282.7246398925781,
|
300 |
+
"loss": 0.7693,
|
301 |
+
"rewards/accuracies": 0.5062500238418579,
|
302 |
+
"rewards/chosen": -0.9033983945846558,
|
303 |
+
"rewards/margins": 1.6113331317901611,
|
304 |
+
"rewards/rejected": -2.5147316455841064,
|
305 |
+
"step": 190
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.64,
|
309 |
+
"learning_rate": 4.3705463182897863e-07,
|
310 |
+
"logits/chosen": -2.2998836040496826,
|
311 |
+
"logits/rejected": -2.2824947834014893,
|
312 |
+
"logps/chosen": -255.98239135742188,
|
313 |
+
"logps/rejected": -282.6729431152344,
|
314 |
+
"loss": 0.6555,
|
315 |
+
"rewards/accuracies": 0.6499999761581421,
|
316 |
+
"rewards/chosen": -0.7247324585914612,
|
317 |
+
"rewards/margins": 2.3264706134796143,
|
318 |
+
"rewards/rejected": -3.0512032508850098,
|
319 |
+
"step": 200
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.64,
|
323 |
+
"eval_logits/chosen": -2.227078676223755,
|
324 |
+
"eval_logits/rejected": -2.2540831565856934,
|
325 |
+
"eval_logps/chosen": -251.6654815673828,
|
326 |
+
"eval_logps/rejected": -268.0155029296875,
|
327 |
+
"eval_loss": 0.8345099091529846,
|
328 |
+
"eval_rewards/accuracies": 0.5595238208770752,
|
329 |
+
"eval_rewards/chosen": -1.472989559173584,
|
330 |
+
"eval_rewards/margins": 0.09063953906297684,
|
331 |
+
"eval_rewards/rejected": -1.563629150390625,
|
332 |
+
"eval_runtime": 135.0454,
|
333 |
+
"eval_samples_per_second": 7.405,
|
334 |
+
"eval_steps_per_second": 0.467,
|
335 |
+
"step": 200
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.67,
|
339 |
+
"learning_rate": 4.311163895486936e-07,
|
340 |
+
"logits/chosen": -2.1886990070343018,
|
341 |
+
"logits/rejected": -2.2061002254486084,
|
342 |
+
"logps/chosen": -272.6381530761719,
|
343 |
+
"logps/rejected": -307.3228759765625,
|
344 |
+
"loss": 0.6607,
|
345 |
+
"rewards/accuracies": 0.612500011920929,
|
346 |
+
"rewards/chosen": -0.7392950057983398,
|
347 |
+
"rewards/margins": 2.356786012649536,
|
348 |
+
"rewards/rejected": -3.096081018447876,
|
349 |
+
"step": 210
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.71,
|
353 |
+
"learning_rate": 4.251781472684085e-07,
|
354 |
+
"logits/chosen": -2.3205573558807373,
|
355 |
+
"logits/rejected": -2.3125534057617188,
|
356 |
+
"logps/chosen": -208.845458984375,
|
357 |
+
"logps/rejected": -231.4398651123047,
|
358 |
+
"loss": 0.6198,
|
359 |
+
"rewards/accuracies": 0.699999988079071,
|
360 |
+
"rewards/chosen": -0.921154797077179,
|
361 |
+
"rewards/margins": 1.9245474338531494,
|
362 |
+
"rewards/rejected": -2.8457021713256836,
|
363 |
+
"step": 220
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.74,
|
367 |
+
"learning_rate": 4.192399049881235e-07,
|
368 |
+
"logits/chosen": -2.2658634185791016,
|
369 |
+
"logits/rejected": -2.2645907402038574,
|
370 |
+
"logps/chosen": -258.8167419433594,
|
371 |
+
"logps/rejected": -303.98541259765625,
|
372 |
+
"loss": 0.6653,
|
373 |
+
"rewards/accuracies": 0.637499988079071,
|
374 |
+
"rewards/chosen": -1.0780036449432373,
|
375 |
+
"rewards/margins": 2.2675023078918457,
|
376 |
+
"rewards/rejected": -3.345506191253662,
|
377 |
+
"step": 230
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.77,
|
381 |
+
"learning_rate": 4.1330166270783846e-07,
|
382 |
+
"logits/chosen": -2.259265184402466,
|
383 |
+
"logits/rejected": -2.259178638458252,
|
384 |
+
"logps/chosen": -265.008544921875,
|
385 |
+
"logps/rejected": -283.46844482421875,
|
386 |
+
"loss": 0.6808,
|
387 |
+
"rewards/accuracies": 0.6187499761581421,
|
388 |
+
"rewards/chosen": -1.058840036392212,
|
389 |
+
"rewards/margins": 1.759861946105957,
|
390 |
+
"rewards/rejected": -2.818701982498169,
|
391 |
+
"step": 240
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.8,
|
395 |
+
"learning_rate": 4.0736342042755347e-07,
|
396 |
+
"logits/chosen": -2.264968156814575,
|
397 |
+
"logits/rejected": -2.2467730045318604,
|
398 |
+
"logps/chosen": -245.5597686767578,
|
399 |
+
"logps/rejected": -282.61566162109375,
|
400 |
+
"loss": 0.6574,
|
401 |
+
"rewards/accuracies": 0.6937500238418579,
|
402 |
+
"rewards/chosen": -0.6839832067489624,
|
403 |
+
"rewards/margins": 2.1135334968566895,
|
404 |
+
"rewards/rejected": -2.7975165843963623,
|
405 |
+
"step": 250
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.83,
|
409 |
+
"learning_rate": 4.0142517814726837e-07,
|
410 |
+
"logits/chosen": -2.2550175189971924,
|
411 |
+
"logits/rejected": -2.2587451934814453,
|
412 |
+
"logps/chosen": -264.4140319824219,
|
413 |
+
"logps/rejected": -313.1862487792969,
|
414 |
+
"loss": 0.6417,
|
415 |
+
"rewards/accuracies": 0.637499988079071,
|
416 |
+
"rewards/chosen": -1.2853078842163086,
|
417 |
+
"rewards/margins": 1.7770347595214844,
|
418 |
+
"rewards/rejected": -3.062342882156372,
|
419 |
+
"step": 260
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.87,
|
423 |
+
"learning_rate": 3.9548693586698333e-07,
|
424 |
+
"logits/chosen": -2.30830454826355,
|
425 |
+
"logits/rejected": -2.3013198375701904,
|
426 |
+
"logps/chosen": -253.91281127929688,
|
427 |
+
"logps/rejected": -266.73382568359375,
|
428 |
+
"loss": 0.6325,
|
429 |
+
"rewards/accuracies": 0.71875,
|
430 |
+
"rewards/chosen": -0.6817399859428406,
|
431 |
+
"rewards/margins": 2.7105841636657715,
|
432 |
+
"rewards/rejected": -3.3923239707946777,
|
433 |
+
"step": 270
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.9,
|
437 |
+
"learning_rate": 3.8954869358669834e-07,
|
438 |
+
"logits/chosen": -2.331390142440796,
|
439 |
+
"logits/rejected": -2.336571216583252,
|
440 |
+
"logps/chosen": -247.58544921875,
|
441 |
+
"logps/rejected": -284.62884521484375,
|
442 |
+
"loss": 0.6308,
|
443 |
+
"rewards/accuracies": 0.699999988079071,
|
444 |
+
"rewards/chosen": -0.9239405393600464,
|
445 |
+
"rewards/margins": 2.58821439743042,
|
446 |
+
"rewards/rejected": -3.512155532836914,
|
447 |
+
"step": 280
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.93,
|
451 |
+
"learning_rate": 3.836104513064133e-07,
|
452 |
+
"logits/chosen": -2.3030402660369873,
|
453 |
+
"logits/rejected": -2.290931224822998,
|
454 |
+
"logps/chosen": -264.10296630859375,
|
455 |
+
"logps/rejected": -310.730224609375,
|
456 |
+
"loss": 0.6456,
|
457 |
+
"rewards/accuracies": 0.643750011920929,
|
458 |
+
"rewards/chosen": -1.4110323190689087,
|
459 |
+
"rewards/margins": 1.8175039291381836,
|
460 |
+
"rewards/rejected": -3.2285361289978027,
|
461 |
+
"step": 290
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"epoch": 0.96,
|
465 |
+
"learning_rate": 3.7767220902612825e-07,
|
466 |
+
"logits/chosen": -2.3290443420410156,
|
467 |
+
"logits/rejected": -2.3188068866729736,
|
468 |
+
"logps/chosen": -251.7384490966797,
|
469 |
+
"logps/rejected": -287.4365234375,
|
470 |
+
"loss": 0.6566,
|
471 |
+
"rewards/accuracies": 0.6812499761581421,
|
472 |
+
"rewards/chosen": -1.2217800617218018,
|
473 |
+
"rewards/margins": 2.0904905796051025,
|
474 |
+
"rewards/rejected": -3.312270402908325,
|
475 |
+
"step": 300
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"epoch": 0.96,
|
479 |
+
"eval_logits/chosen": -2.352015733718872,
|
480 |
+
"eval_logits/rejected": -2.3778603076934814,
|
481 |
+
"eval_logps/chosen": -256.6260070800781,
|
482 |
+
"eval_logps/rejected": -273.6545715332031,
|
483 |
+
"eval_loss": 0.8076202869415283,
|
484 |
+
"eval_rewards/accuracies": 0.5555555820465088,
|
485 |
+
"eval_rewards/chosen": -1.9690420627593994,
|
486 |
+
"eval_rewards/margins": 0.15849098563194275,
|
487 |
+
"eval_rewards/rejected": -2.127532958984375,
|
488 |
+
"eval_runtime": 135.1507,
|
489 |
+
"eval_samples_per_second": 7.399,
|
490 |
+
"eval_steps_per_second": 0.466,
|
491 |
+
"step": 300
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.99,
|
495 |
+
"learning_rate": 3.717339667458432e-07,
|
496 |
+
"logits/chosen": -2.228579044342041,
|
497 |
+
"logits/rejected": -2.2486958503723145,
|
498 |
+
"logps/chosen": -269.064208984375,
|
499 |
+
"logps/rejected": -314.79510498046875,
|
500 |
+
"loss": 0.5843,
|
501 |
+
"rewards/accuracies": 0.7562500238418579,
|
502 |
+
"rewards/chosen": -0.7734891772270203,
|
503 |
+
"rewards/margins": 3.1552462577819824,
|
504 |
+
"rewards/rejected": -3.9287352561950684,
|
505 |
+
"step": 310
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 1.03,
|
509 |
+
"learning_rate": 3.6579572446555817e-07,
|
510 |
+
"logits/chosen": -2.2717132568359375,
|
511 |
+
"logits/rejected": -2.2769129276275635,
|
512 |
+
"logps/chosen": -257.6423645019531,
|
513 |
+
"logps/rejected": -314.797119140625,
|
514 |
+
"loss": 0.3177,
|
515 |
+
"rewards/accuracies": 0.8812500238418579,
|
516 |
+
"rewards/chosen": -0.4064851403236389,
|
517 |
+
"rewards/margins": 4.01033878326416,
|
518 |
+
"rewards/rejected": -4.416823863983154,
|
519 |
+
"step": 320
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.06,
|
523 |
+
"learning_rate": 3.598574821852731e-07,
|
524 |
+
"logits/chosen": -2.247117280960083,
|
525 |
+
"logits/rejected": -2.250030040740967,
|
526 |
+
"logps/chosen": -235.4261016845703,
|
527 |
+
"logps/rejected": -309.361572265625,
|
528 |
+
"loss": 0.0693,
|
529 |
+
"rewards/accuracies": 0.981249988079071,
|
530 |
+
"rewards/chosen": 0.2905876338481903,
|
531 |
+
"rewards/margins": 6.00634765625,
|
532 |
+
"rewards/rejected": -5.715760231018066,
|
533 |
+
"step": 330
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 1.09,
|
537 |
+
"learning_rate": 3.5391923990498813e-07,
|
538 |
+
"logits/chosen": -2.182969570159912,
|
539 |
+
"logits/rejected": -2.16931414604187,
|
540 |
+
"logps/chosen": -255.9242706298828,
|
541 |
+
"logps/rejected": -364.0120544433594,
|
542 |
+
"loss": 0.0276,
|
543 |
+
"rewards/accuracies": 0.9937499761581421,
|
544 |
+
"rewards/chosen": 0.9283174276351929,
|
545 |
+
"rewards/margins": 8.556694030761719,
|
546 |
+
"rewards/rejected": -7.628376007080078,
|
547 |
+
"step": 340
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"epoch": 1.12,
|
551 |
+
"learning_rate": 3.479809976247031e-07,
|
552 |
+
"logits/chosen": -2.167675495147705,
|
553 |
+
"logits/rejected": -2.157602071762085,
|
554 |
+
"logps/chosen": -235.40853881835938,
|
555 |
+
"logps/rejected": -346.43328857421875,
|
556 |
+
"loss": 0.0182,
|
557 |
+
"rewards/accuracies": 1.0,
|
558 |
+
"rewards/chosen": 1.6523984670639038,
|
559 |
+
"rewards/margins": 9.692710876464844,
|
560 |
+
"rewards/rejected": -8.040311813354492,
|
561 |
+
"step": 350
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 1.15,
|
565 |
+
"learning_rate": 3.42042755344418e-07,
|
566 |
+
"logits/chosen": -2.1937975883483887,
|
567 |
+
"logits/rejected": -2.2003121376037598,
|
568 |
+
"logps/chosen": -211.8225555419922,
|
569 |
+
"logps/rejected": -345.91094970703125,
|
570 |
+
"loss": 0.0124,
|
571 |
+
"rewards/accuracies": 0.9937499761581421,
|
572 |
+
"rewards/chosen": 2.343766927719116,
|
573 |
+
"rewards/margins": 12.03510570526123,
|
574 |
+
"rewards/rejected": -9.691339492797852,
|
575 |
+
"step": 360
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 1.19,
|
579 |
+
"learning_rate": 3.36104513064133e-07,
|
580 |
+
"logits/chosen": -2.2343811988830566,
|
581 |
+
"logits/rejected": -2.242821216583252,
|
582 |
+
"logps/chosen": -194.0260772705078,
|
583 |
+
"logps/rejected": -351.4122009277344,
|
584 |
+
"loss": 0.0116,
|
585 |
+
"rewards/accuracies": 1.0,
|
586 |
+
"rewards/chosen": 2.336714267730713,
|
587 |
+
"rewards/margins": 12.730189323425293,
|
588 |
+
"rewards/rejected": -10.393475532531738,
|
589 |
+
"step": 370
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 1.22,
|
593 |
+
"learning_rate": 3.3016627078384796e-07,
|
594 |
+
"logits/chosen": -2.2088000774383545,
|
595 |
+
"logits/rejected": -2.2172210216522217,
|
596 |
+
"logps/chosen": -214.9263153076172,
|
597 |
+
"logps/rejected": -374.9606018066406,
|
598 |
+
"loss": 0.0099,
|
599 |
+
"rewards/accuracies": 1.0,
|
600 |
+
"rewards/chosen": 2.942856788635254,
|
601 |
+
"rewards/margins": 14.011993408203125,
|
602 |
+
"rewards/rejected": -11.069137573242188,
|
603 |
+
"step": 380
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 1.25,
|
607 |
+
"learning_rate": 3.2422802850356297e-07,
|
608 |
+
"logits/chosen": -2.129809856414795,
|
609 |
+
"logits/rejected": -2.1051840782165527,
|
610 |
+
"logps/chosen": -223.37490844726562,
|
611 |
+
"logps/rejected": -409.17919921875,
|
612 |
+
"loss": 0.0104,
|
613 |
+
"rewards/accuracies": 1.0,
|
614 |
+
"rewards/chosen": 3.214216709136963,
|
615 |
+
"rewards/margins": 16.285297393798828,
|
616 |
+
"rewards/rejected": -13.071080207824707,
|
617 |
+
"step": 390
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 1.28,
|
621 |
+
"learning_rate": 3.182897862232779e-07,
|
622 |
+
"logits/chosen": -2.1976237297058105,
|
623 |
+
"logits/rejected": -2.194974422454834,
|
624 |
+
"logps/chosen": -197.03897094726562,
|
625 |
+
"logps/rejected": -380.13031005859375,
|
626 |
+
"loss": 0.0057,
|
627 |
+
"rewards/accuracies": 1.0,
|
628 |
+
"rewards/chosen": 2.860673427581787,
|
629 |
+
"rewards/margins": 16.22535514831543,
|
630 |
+
"rewards/rejected": -13.364683151245117,
|
631 |
+
"step": 400
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 1.28,
|
635 |
+
"eval_logits/chosen": -2.170393705368042,
|
636 |
+
"eval_logits/rejected": -2.197235345840454,
|
637 |
+
"eval_logps/chosen": -270.4623718261719,
|
638 |
+
"eval_logps/rejected": -289.9275207519531,
|
639 |
+
"eval_loss": 0.8791230320930481,
|
640 |
+
"eval_rewards/accuracies": 0.5634920597076416,
|
641 |
+
"eval_rewards/chosen": -3.3526790142059326,
|
642 |
+
"eval_rewards/margins": 0.4021467864513397,
|
643 |
+
"eval_rewards/rejected": -3.7548255920410156,
|
644 |
+
"eval_runtime": 135.1943,
|
645 |
+
"eval_samples_per_second": 7.397,
|
646 |
+
"eval_steps_per_second": 0.466,
|
647 |
+
"step": 400
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 1.31,
|
651 |
+
"learning_rate": 3.1235154394299283e-07,
|
652 |
+
"logits/chosen": -2.1489205360412598,
|
653 |
+
"logits/rejected": -2.1540191173553467,
|
654 |
+
"logps/chosen": -219.0214385986328,
|
655 |
+
"logps/rejected": -397.30364990234375,
|
656 |
+
"loss": 0.0043,
|
657 |
+
"rewards/accuracies": 1.0,
|
658 |
+
"rewards/chosen": 3.2062506675720215,
|
659 |
+
"rewards/margins": 16.805278778076172,
|
660 |
+
"rewards/rejected": -13.599026679992676,
|
661 |
+
"step": 410
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 1.35,
|
665 |
+
"learning_rate": 3.0641330166270784e-07,
|
666 |
+
"logits/chosen": -2.115307092666626,
|
667 |
+
"logits/rejected": -2.0995349884033203,
|
668 |
+
"logps/chosen": -234.65438842773438,
|
669 |
+
"logps/rejected": -407.8638000488281,
|
670 |
+
"loss": 0.0098,
|
671 |
+
"rewards/accuracies": 0.9937499761581421,
|
672 |
+
"rewards/chosen": 2.6958987712860107,
|
673 |
+
"rewards/margins": 17.416133880615234,
|
674 |
+
"rewards/rejected": -14.720235824584961,
|
675 |
+
"step": 420
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 1.38,
|
679 |
+
"learning_rate": 3.004750593824228e-07,
|
680 |
+
"logits/chosen": -2.134051561355591,
|
681 |
+
"logits/rejected": -2.148725986480713,
|
682 |
+
"logps/chosen": -195.26100158691406,
|
683 |
+
"logps/rejected": -378.8183898925781,
|
684 |
+
"loss": 0.0072,
|
685 |
+
"rewards/accuracies": 1.0,
|
686 |
+
"rewards/chosen": 2.5557029247283936,
|
687 |
+
"rewards/margins": 17.337064743041992,
|
688 |
+
"rewards/rejected": -14.781362533569336,
|
689 |
+
"step": 430
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 1.41,
|
693 |
+
"learning_rate": 2.9453681710213776e-07,
|
694 |
+
"logits/chosen": -2.1074020862579346,
|
695 |
+
"logits/rejected": -2.1130149364471436,
|
696 |
+
"logps/chosen": -247.6088104248047,
|
697 |
+
"logps/rejected": -419.13232421875,
|
698 |
+
"loss": 0.0058,
|
699 |
+
"rewards/accuracies": 1.0,
|
700 |
+
"rewards/chosen": 2.3471179008483887,
|
701 |
+
"rewards/margins": 16.78860855102539,
|
702 |
+
"rewards/rejected": -14.441492080688477,
|
703 |
+
"step": 440
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 1.44,
|
707 |
+
"learning_rate": 2.885985748218527e-07,
|
708 |
+
"logits/chosen": -2.1506831645965576,
|
709 |
+
"logits/rejected": -2.1653859615325928,
|
710 |
+
"logps/chosen": -245.6567840576172,
|
711 |
+
"logps/rejected": -420.876220703125,
|
712 |
+
"loss": 0.0079,
|
713 |
+
"rewards/accuracies": 1.0,
|
714 |
+
"rewards/chosen": 2.4259517192840576,
|
715 |
+
"rewards/margins": 16.992084503173828,
|
716 |
+
"rewards/rejected": -14.566131591796875,
|
717 |
+
"step": 450
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 1.47,
|
721 |
+
"learning_rate": 2.8266033254156767e-07,
|
722 |
+
"logits/chosen": -2.109947443008423,
|
723 |
+
"logits/rejected": -2.1249232292175293,
|
724 |
+
"logps/chosen": -241.10916137695312,
|
725 |
+
"logps/rejected": -439.56781005859375,
|
726 |
+
"loss": 0.0051,
|
727 |
+
"rewards/accuracies": 1.0,
|
728 |
+
"rewards/chosen": 2.2505855560302734,
|
729 |
+
"rewards/margins": 16.7042179107666,
|
730 |
+
"rewards/rejected": -14.453630447387695,
|
731 |
+
"step": 460
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 1.51,
|
735 |
+
"learning_rate": 2.7672209026128263e-07,
|
736 |
+
"logits/chosen": -2.1982929706573486,
|
737 |
+
"logits/rejected": -2.1973724365234375,
|
738 |
+
"logps/chosen": -238.69497680664062,
|
739 |
+
"logps/rejected": -403.54791259765625,
|
740 |
+
"loss": 0.0144,
|
741 |
+
"rewards/accuracies": 0.987500011920929,
|
742 |
+
"rewards/chosen": 1.3100935220718384,
|
743 |
+
"rewards/margins": 14.033093452453613,
|
744 |
+
"rewards/rejected": -12.723000526428223,
|
745 |
+
"step": 470
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 1.54,
|
749 |
+
"learning_rate": 2.7078384798099764e-07,
|
750 |
+
"logits/chosen": -2.1538589000701904,
|
751 |
+
"logits/rejected": -2.1524319648742676,
|
752 |
+
"logps/chosen": -219.76461791992188,
|
753 |
+
"logps/rejected": -362.3617248535156,
|
754 |
+
"loss": 0.0089,
|
755 |
+
"rewards/accuracies": 1.0,
|
756 |
+
"rewards/chosen": 2.142836093902588,
|
757 |
+
"rewards/margins": 14.598767280578613,
|
758 |
+
"rewards/rejected": -12.45592975616455,
|
759 |
+
"step": 480
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.57,
|
763 |
+
"learning_rate": 2.648456057007126e-07,
|
764 |
+
"logits/chosen": -2.270354747772217,
|
765 |
+
"logits/rejected": -2.285727024078369,
|
766 |
+
"logps/chosen": -213.4247283935547,
|
767 |
+
"logps/rejected": -350.7535400390625,
|
768 |
+
"loss": 0.009,
|
769 |
+
"rewards/accuracies": 0.9937499761581421,
|
770 |
+
"rewards/chosen": 2.24265456199646,
|
771 |
+
"rewards/margins": 13.511209487915039,
|
772 |
+
"rewards/rejected": -11.268553733825684,
|
773 |
+
"step": 490
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 1.6,
|
777 |
+
"learning_rate": 2.589073634204275e-07,
|
778 |
+
"logits/chosen": -2.189033031463623,
|
779 |
+
"logits/rejected": -2.1983439922332764,
|
780 |
+
"logps/chosen": -226.820556640625,
|
781 |
+
"logps/rejected": -391.2894592285156,
|
782 |
+
"loss": 0.0063,
|
783 |
+
"rewards/accuracies": 1.0,
|
784 |
+
"rewards/chosen": 2.644188642501831,
|
785 |
+
"rewards/margins": 15.23480224609375,
|
786 |
+
"rewards/rejected": -12.59061336517334,
|
787 |
+
"step": 500
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 1.6,
|
791 |
+
"eval_logits/chosen": -2.2120492458343506,
|
792 |
+
"eval_logits/rejected": -2.239100217819214,
|
793 |
+
"eval_logps/chosen": -266.6351318359375,
|
794 |
+
"eval_logps/rejected": -285.4739074707031,
|
795 |
+
"eval_loss": 0.8692338466644287,
|
796 |
+
"eval_rewards/accuracies": 0.567460298538208,
|
797 |
+
"eval_rewards/chosen": -2.969956398010254,
|
798 |
+
"eval_rewards/margins": 0.3395082652568817,
|
799 |
+
"eval_rewards/rejected": -3.309464693069458,
|
800 |
+
"eval_runtime": 135.0534,
|
801 |
+
"eval_samples_per_second": 7.404,
|
802 |
+
"eval_steps_per_second": 0.466,
|
803 |
+
"step": 500
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 1.63,
|
807 |
+
"learning_rate": 2.529691211401425e-07,
|
808 |
+
"logits/chosen": -2.2285079956054688,
|
809 |
+
"logits/rejected": -2.2011256217956543,
|
810 |
+
"logps/chosen": -215.3155059814453,
|
811 |
+
"logps/rejected": -366.4723205566406,
|
812 |
+
"loss": 0.0093,
|
813 |
+
"rewards/accuracies": 1.0,
|
814 |
+
"rewards/chosen": 2.619319438934326,
|
815 |
+
"rewards/margins": 14.285768508911133,
|
816 |
+
"rewards/rejected": -11.666448593139648,
|
817 |
+
"step": 510
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 1.67,
|
821 |
+
"learning_rate": 2.4703087885985747e-07,
|
822 |
+
"logits/chosen": -2.180443525314331,
|
823 |
+
"logits/rejected": -2.196728467941284,
|
824 |
+
"logps/chosen": -226.239013671875,
|
825 |
+
"logps/rejected": -395.51397705078125,
|
826 |
+
"loss": 0.0083,
|
827 |
+
"rewards/accuracies": 1.0,
|
828 |
+
"rewards/chosen": 2.7000768184661865,
|
829 |
+
"rewards/margins": 15.548223495483398,
|
830 |
+
"rewards/rejected": -12.84814739227295,
|
831 |
+
"step": 520
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 1.7,
|
835 |
+
"learning_rate": 2.410926365795724e-07,
|
836 |
+
"logits/chosen": -2.1908416748046875,
|
837 |
+
"logits/rejected": -2.1960384845733643,
|
838 |
+
"logps/chosen": -209.208984375,
|
839 |
+
"logps/rejected": -333.3621520996094,
|
840 |
+
"loss": 0.0081,
|
841 |
+
"rewards/accuracies": 1.0,
|
842 |
+
"rewards/chosen": 1.2140251398086548,
|
843 |
+
"rewards/margins": 11.866113662719727,
|
844 |
+
"rewards/rejected": -10.652088165283203,
|
845 |
+
"step": 530
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 1.73,
|
849 |
+
"learning_rate": 2.351543942992874e-07,
|
850 |
+
"logits/chosen": -2.1653943061828613,
|
851 |
+
"logits/rejected": -2.171555995941162,
|
852 |
+
"logps/chosen": -209.2273712158203,
|
853 |
+
"logps/rejected": -370.8827819824219,
|
854 |
+
"loss": 0.0056,
|
855 |
+
"rewards/accuracies": 1.0,
|
856 |
+
"rewards/chosen": 1.8547580242156982,
|
857 |
+
"rewards/margins": 14.104257583618164,
|
858 |
+
"rewards/rejected": -12.24949836730957,
|
859 |
+
"step": 540
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 1.76,
|
863 |
+
"learning_rate": 2.2921615201900234e-07,
|
864 |
+
"logits/chosen": -2.179865837097168,
|
865 |
+
"logits/rejected": -2.187969446182251,
|
866 |
+
"logps/chosen": -248.9722137451172,
|
867 |
+
"logps/rejected": -397.516357421875,
|
868 |
+
"loss": 0.011,
|
869 |
+
"rewards/accuracies": 1.0,
|
870 |
+
"rewards/chosen": 2.0791749954223633,
|
871 |
+
"rewards/margins": 15.069662094116211,
|
872 |
+
"rewards/rejected": -12.99048900604248,
|
873 |
+
"step": 550
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 1.79,
|
877 |
+
"learning_rate": 2.2327790973871732e-07,
|
878 |
+
"logits/chosen": -2.2084298133850098,
|
879 |
+
"logits/rejected": -2.196798801422119,
|
880 |
+
"logps/chosen": -216.34432983398438,
|
881 |
+
"logps/rejected": -364.7033386230469,
|
882 |
+
"loss": 0.0114,
|
883 |
+
"rewards/accuracies": 1.0,
|
884 |
+
"rewards/chosen": 1.6750681400299072,
|
885 |
+
"rewards/margins": 12.608332633972168,
|
886 |
+
"rewards/rejected": -10.933263778686523,
|
887 |
+
"step": 560
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 1.83,
|
891 |
+
"learning_rate": 2.173396674584323e-07,
|
892 |
+
"logits/chosen": -2.1891276836395264,
|
893 |
+
"logits/rejected": -2.2081406116485596,
|
894 |
+
"logps/chosen": -233.3393096923828,
|
895 |
+
"logps/rejected": -390.85699462890625,
|
896 |
+
"loss": 0.0068,
|
897 |
+
"rewards/accuracies": 1.0,
|
898 |
+
"rewards/chosen": 1.547383189201355,
|
899 |
+
"rewards/margins": 13.556729316711426,
|
900 |
+
"rewards/rejected": -12.009345054626465,
|
901 |
+
"step": 570
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 1.86,
|
905 |
+
"learning_rate": 2.1140142517814726e-07,
|
906 |
+
"logits/chosen": -2.184476375579834,
|
907 |
+
"logits/rejected": -2.1820874214172363,
|
908 |
+
"logps/chosen": -235.4527130126953,
|
909 |
+
"logps/rejected": -346.69952392578125,
|
910 |
+
"loss": 0.0142,
|
911 |
+
"rewards/accuracies": 1.0,
|
912 |
+
"rewards/chosen": 1.5227887630462646,
|
913 |
+
"rewards/margins": 11.664176940917969,
|
914 |
+
"rewards/rejected": -10.141386032104492,
|
915 |
+
"step": 580
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 1.89,
|
919 |
+
"learning_rate": 2.0546318289786222e-07,
|
920 |
+
"logits/chosen": -2.1869351863861084,
|
921 |
+
"logits/rejected": -2.1961607933044434,
|
922 |
+
"logps/chosen": -219.57962036132812,
|
923 |
+
"logps/rejected": -345.61663818359375,
|
924 |
+
"loss": 0.0171,
|
925 |
+
"rewards/accuracies": 1.0,
|
926 |
+
"rewards/chosen": 2.060570478439331,
|
927 |
+
"rewards/margins": 12.773801803588867,
|
928 |
+
"rewards/rejected": -10.71323013305664,
|
929 |
+
"step": 590
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 1.92,
|
933 |
+
"learning_rate": 1.9952494061757718e-07,
|
934 |
+
"logits/chosen": -2.1666817665100098,
|
935 |
+
"logits/rejected": -2.162493944168091,
|
936 |
+
"logps/chosen": -220.46829223632812,
|
937 |
+
"logps/rejected": -381.7313537597656,
|
938 |
+
"loss": 0.0164,
|
939 |
+
"rewards/accuracies": 1.0,
|
940 |
+
"rewards/chosen": 1.8761663436889648,
|
941 |
+
"rewards/margins": 12.851763725280762,
|
942 |
+
"rewards/rejected": -10.97559642791748,
|
943 |
+
"step": 600
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 1.92,
|
947 |
+
"eval_logits/chosen": -2.16733717918396,
|
948 |
+
"eval_logits/rejected": -2.193927526473999,
|
949 |
+
"eval_logps/chosen": -270.457275390625,
|
950 |
+
"eval_logps/rejected": -290.05157470703125,
|
951 |
+
"eval_loss": 0.8890212774276733,
|
952 |
+
"eval_rewards/accuracies": 0.5873016119003296,
|
953 |
+
"eval_rewards/chosen": -3.352169990539551,
|
954 |
+
"eval_rewards/margins": 0.4150641858577728,
|
955 |
+
"eval_rewards/rejected": -3.7672338485717773,
|
956 |
+
"eval_runtime": 135.1266,
|
957 |
+
"eval_samples_per_second": 7.4,
|
958 |
+
"eval_steps_per_second": 0.466,
|
959 |
+
"step": 600
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 1.96,
|
963 |
+
"learning_rate": 1.9358669833729216e-07,
|
964 |
+
"logits/chosen": -2.165018320083618,
|
965 |
+
"logits/rejected": -2.1551880836486816,
|
966 |
+
"logps/chosen": -236.99209594726562,
|
967 |
+
"logps/rejected": -379.29034423828125,
|
968 |
+
"loss": 0.0063,
|
969 |
+
"rewards/accuracies": 1.0,
|
970 |
+
"rewards/chosen": 1.8915096521377563,
|
971 |
+
"rewards/margins": 12.898310661315918,
|
972 |
+
"rewards/rejected": -11.006799697875977,
|
973 |
+
"step": 610
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 1.99,
|
977 |
+
"learning_rate": 1.876484560570071e-07,
|
978 |
+
"logits/chosen": -2.112156391143799,
|
979 |
+
"logits/rejected": -2.1361286640167236,
|
980 |
+
"logps/chosen": -238.260986328125,
|
981 |
+
"logps/rejected": -367.57647705078125,
|
982 |
+
"loss": 0.0089,
|
983 |
+
"rewards/accuracies": 1.0,
|
984 |
+
"rewards/chosen": 1.1359070539474487,
|
985 |
+
"rewards/margins": 12.050466537475586,
|
986 |
+
"rewards/rejected": -10.914558410644531,
|
987 |
+
"step": 620
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 2.02,
|
991 |
+
"learning_rate": 1.8171021377672207e-07,
|
992 |
+
"logits/chosen": -2.1914753913879395,
|
993 |
+
"logits/rejected": -2.2092552185058594,
|
994 |
+
"logps/chosen": -239.82968139648438,
|
995 |
+
"logps/rejected": -379.8808898925781,
|
996 |
+
"loss": 0.0065,
|
997 |
+
"rewards/accuracies": 1.0,
|
998 |
+
"rewards/chosen": 0.7776199579238892,
|
999 |
+
"rewards/margins": 11.117961883544922,
|
1000 |
+
"rewards/rejected": -10.340343475341797,
|
1001 |
+
"step": 630
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 2.05,
|
1005 |
+
"learning_rate": 1.7577197149643706e-07,
|
1006 |
+
"logits/chosen": -2.124424695968628,
|
1007 |
+
"logits/rejected": -2.1311514377593994,
|
1008 |
+
"logps/chosen": -251.8069610595703,
|
1009 |
+
"logps/rejected": -337.7670593261719,
|
1010 |
+
"loss": 0.0089,
|
1011 |
+
"rewards/accuracies": 1.0,
|
1012 |
+
"rewards/chosen": -0.6031948924064636,
|
1013 |
+
"rewards/margins": 7.557145595550537,
|
1014 |
+
"rewards/rejected": -8.160341262817383,
|
1015 |
+
"step": 640
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 2.08,
|
1019 |
+
"learning_rate": 1.6983372921615202e-07,
|
1020 |
+
"logits/chosen": -2.106081008911133,
|
1021 |
+
"logits/rejected": -2.0959670543670654,
|
1022 |
+
"logps/chosen": -249.3319854736328,
|
1023 |
+
"logps/rejected": -362.3397521972656,
|
1024 |
+
"loss": 0.0062,
|
1025 |
+
"rewards/accuracies": 0.9937499761581421,
|
1026 |
+
"rewards/chosen": -0.243983656167984,
|
1027 |
+
"rewards/margins": 9.672110557556152,
|
1028 |
+
"rewards/rejected": -9.916093826293945,
|
1029 |
+
"step": 650
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 2.12,
|
1033 |
+
"learning_rate": 1.6389548693586697e-07,
|
1034 |
+
"logits/chosen": -2.0426225662231445,
|
1035 |
+
"logits/rejected": -2.027235507965088,
|
1036 |
+
"logps/chosen": -264.58343505859375,
|
1037 |
+
"logps/rejected": -402.2667541503906,
|
1038 |
+
"loss": 0.0046,
|
1039 |
+
"rewards/accuracies": 1.0,
|
1040 |
+
"rewards/chosen": 0.5264443159103394,
|
1041 |
+
"rewards/margins": 11.265119552612305,
|
1042 |
+
"rewards/rejected": -10.738676071166992,
|
1043 |
+
"step": 660
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 2.15,
|
1047 |
+
"learning_rate": 1.5795724465558193e-07,
|
1048 |
+
"logits/chosen": -2.0862302780151367,
|
1049 |
+
"logits/rejected": -2.094032049179077,
|
1050 |
+
"logps/chosen": -219.7861785888672,
|
1051 |
+
"logps/rejected": -376.1147155761719,
|
1052 |
+
"loss": 0.0031,
|
1053 |
+
"rewards/accuracies": 1.0,
|
1054 |
+
"rewards/chosen": 1.6179927587509155,
|
1055 |
+
"rewards/margins": 14.43371868133545,
|
1056 |
+
"rewards/rejected": -12.815725326538086,
|
1057 |
+
"step": 670
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 2.18,
|
1061 |
+
"learning_rate": 1.520190023752969e-07,
|
1062 |
+
"logits/chosen": -2.141444206237793,
|
1063 |
+
"logits/rejected": -2.1569528579711914,
|
1064 |
+
"logps/chosen": -217.67626953125,
|
1065 |
+
"logps/rejected": -390.2943115234375,
|
1066 |
+
"loss": 0.0026,
|
1067 |
+
"rewards/accuracies": 1.0,
|
1068 |
+
"rewards/chosen": 1.5685292482376099,
|
1069 |
+
"rewards/margins": 14.526385307312012,
|
1070 |
+
"rewards/rejected": -12.957855224609375,
|
1071 |
+
"step": 680
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 2.21,
|
1075 |
+
"learning_rate": 1.4608076009501184e-07,
|
1076 |
+
"logits/chosen": -2.137134552001953,
|
1077 |
+
"logits/rejected": -2.1524899005889893,
|
1078 |
+
"logps/chosen": -213.85012817382812,
|
1079 |
+
"logps/rejected": -384.1824645996094,
|
1080 |
+
"loss": 0.0038,
|
1081 |
+
"rewards/accuracies": 1.0,
|
1082 |
+
"rewards/chosen": 1.9703474044799805,
|
1083 |
+
"rewards/margins": 15.583375930786133,
|
1084 |
+
"rewards/rejected": -13.613027572631836,
|
1085 |
+
"step": 690
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 2.24,
|
1089 |
+
"learning_rate": 1.4014251781472683e-07,
|
1090 |
+
"logits/chosen": -2.0553553104400635,
|
1091 |
+
"logits/rejected": -2.0486502647399902,
|
1092 |
+
"logps/chosen": -226.2926788330078,
|
1093 |
+
"logps/rejected": -420.90472412109375,
|
1094 |
+
"loss": 0.0029,
|
1095 |
+
"rewards/accuracies": 1.0,
|
1096 |
+
"rewards/chosen": 2.2629456520080566,
|
1097 |
+
"rewards/margins": 17.714906692504883,
|
1098 |
+
"rewards/rejected": -15.451959609985352,
|
1099 |
+
"step": 700
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"epoch": 2.24,
|
1103 |
+
"eval_logits/chosen": -2.091404676437378,
|
1104 |
+
"eval_logits/rejected": -2.118736982345581,
|
1105 |
+
"eval_logps/chosen": -283.0655517578125,
|
1106 |
+
"eval_logps/rejected": -303.959228515625,
|
1107 |
+
"eval_loss": 0.9730385541915894,
|
1108 |
+
"eval_rewards/accuracies": 0.5873016119003296,
|
1109 |
+
"eval_rewards/chosen": -4.612995147705078,
|
1110 |
+
"eval_rewards/margins": 0.5450049042701721,
|
1111 |
+
"eval_rewards/rejected": -5.157999515533447,
|
1112 |
+
"eval_runtime": 135.0313,
|
1113 |
+
"eval_samples_per_second": 7.406,
|
1114 |
+
"eval_steps_per_second": 0.467,
|
1115 |
+
"step": 700
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.28,
|
1119 |
+
"learning_rate": 1.342042755344418e-07,
|
1120 |
+
"logits/chosen": -2.106203079223633,
|
1121 |
+
"logits/rejected": -2.101205825805664,
|
1122 |
+
"logps/chosen": -209.47457885742188,
|
1123 |
+
"logps/rejected": -427.4419860839844,
|
1124 |
+
"loss": 0.0017,
|
1125 |
+
"rewards/accuracies": 1.0,
|
1126 |
+
"rewards/chosen": 2.1314749717712402,
|
1127 |
+
"rewards/margins": 18.671459197998047,
|
1128 |
+
"rewards/rejected": -16.539981842041016,
|
1129 |
+
"step": 710
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.31,
|
1133 |
+
"learning_rate": 1.2826603325415677e-07,
|
1134 |
+
"logits/chosen": -2.0930514335632324,
|
1135 |
+
"logits/rejected": -2.100776195526123,
|
1136 |
+
"logps/chosen": -232.50479125976562,
|
1137 |
+
"logps/rejected": -422.82537841796875,
|
1138 |
+
"loss": 0.0014,
|
1139 |
+
"rewards/accuracies": 1.0,
|
1140 |
+
"rewards/chosen": 2.4403505325317383,
|
1141 |
+
"rewards/margins": 17.976802825927734,
|
1142 |
+
"rewards/rejected": -15.536453247070312,
|
1143 |
+
"step": 720
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.34,
|
1147 |
+
"learning_rate": 1.2232779097387173e-07,
|
1148 |
+
"logits/chosen": -2.0570120811462402,
|
1149 |
+
"logits/rejected": -2.048424243927002,
|
1150 |
+
"logps/chosen": -220.833251953125,
|
1151 |
+
"logps/rejected": -409.28887939453125,
|
1152 |
+
"loss": 0.0009,
|
1153 |
+
"rewards/accuracies": 1.0,
|
1154 |
+
"rewards/chosen": 2.0816102027893066,
|
1155 |
+
"rewards/margins": 19.023530960083008,
|
1156 |
+
"rewards/rejected": -16.941919326782227,
|
1157 |
+
"step": 730
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.37,
|
1161 |
+
"learning_rate": 1.163895486935867e-07,
|
1162 |
+
"logits/chosen": -2.0480129718780518,
|
1163 |
+
"logits/rejected": -2.0570969581604004,
|
1164 |
+
"logps/chosen": -218.54385375976562,
|
1165 |
+
"logps/rejected": -423.27685546875,
|
1166 |
+
"loss": 0.0022,
|
1167 |
+
"rewards/accuracies": 1.0,
|
1168 |
+
"rewards/chosen": 2.177452802658081,
|
1169 |
+
"rewards/margins": 19.3106689453125,
|
1170 |
+
"rewards/rejected": -17.13321876525879,
|
1171 |
+
"step": 740
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.4,
|
1175 |
+
"learning_rate": 1.1045130641330165e-07,
|
1176 |
+
"logits/chosen": -2.0393099784851074,
|
1177 |
+
"logits/rejected": -2.064631938934326,
|
1178 |
+
"logps/chosen": -240.68948364257812,
|
1179 |
+
"logps/rejected": -438.4137268066406,
|
1180 |
+
"loss": 0.0018,
|
1181 |
+
"rewards/accuracies": 1.0,
|
1182 |
+
"rewards/chosen": 1.9609296321868896,
|
1183 |
+
"rewards/margins": 19.048954010009766,
|
1184 |
+
"rewards/rejected": -17.088024139404297,
|
1185 |
+
"step": 750
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 2.44,
|
1189 |
+
"learning_rate": 1.0451306413301662e-07,
|
1190 |
+
"logits/chosen": -2.078218698501587,
|
1191 |
+
"logits/rejected": -2.09151554107666,
|
1192 |
+
"logps/chosen": -238.7852783203125,
|
1193 |
+
"logps/rejected": -427.560791015625,
|
1194 |
+
"loss": 0.0023,
|
1195 |
+
"rewards/accuracies": 1.0,
|
1196 |
+
"rewards/chosen": 1.3349409103393555,
|
1197 |
+
"rewards/margins": 17.530380249023438,
|
1198 |
+
"rewards/rejected": -16.195438385009766,
|
1199 |
+
"step": 760
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 2.47,
|
1203 |
+
"learning_rate": 9.857482185273158e-08,
|
1204 |
+
"logits/chosen": -2.0929994583129883,
|
1205 |
+
"logits/rejected": -2.1046335697174072,
|
1206 |
+
"logps/chosen": -257.6733703613281,
|
1207 |
+
"logps/rejected": -464.05523681640625,
|
1208 |
+
"loss": 0.0018,
|
1209 |
+
"rewards/accuracies": 1.0,
|
1210 |
+
"rewards/chosen": 2.210766315460205,
|
1211 |
+
"rewards/margins": 18.859294891357422,
|
1212 |
+
"rewards/rejected": -16.648527145385742,
|
1213 |
+
"step": 770
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 2.5,
|
1217 |
+
"learning_rate": 9.263657957244655e-08,
|
1218 |
+
"logits/chosen": -2.113415241241455,
|
1219 |
+
"logits/rejected": -2.1267588138580322,
|
1220 |
+
"logps/chosen": -249.73681640625,
|
1221 |
+
"logps/rejected": -431.0743713378906,
|
1222 |
+
"loss": 0.002,
|
1223 |
+
"rewards/accuracies": 1.0,
|
1224 |
+
"rewards/chosen": 0.9247767329216003,
|
1225 |
+
"rewards/margins": 16.176433563232422,
|
1226 |
+
"rewards/rejected": -15.251657485961914,
|
1227 |
+
"step": 780
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 2.53,
|
1231 |
+
"learning_rate": 8.669833729216151e-08,
|
1232 |
+
"logits/chosen": -2.074481725692749,
|
1233 |
+
"logits/rejected": -2.0785088539123535,
|
1234 |
+
"logps/chosen": -227.53369140625,
|
1235 |
+
"logps/rejected": -384.003173828125,
|
1236 |
+
"loss": 0.0013,
|
1237 |
+
"rewards/accuracies": 1.0,
|
1238 |
+
"rewards/chosen": 0.8787251710891724,
|
1239 |
+
"rewards/margins": 15.583755493164062,
|
1240 |
+
"rewards/rejected": -14.705029487609863,
|
1241 |
+
"step": 790
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 2.56,
|
1245 |
+
"learning_rate": 8.076009501187649e-08,
|
1246 |
+
"logits/chosen": -2.1291556358337402,
|
1247 |
+
"logits/rejected": -2.144925594329834,
|
1248 |
+
"logps/chosen": -226.36203002929688,
|
1249 |
+
"logps/rejected": -399.88360595703125,
|
1250 |
+
"loss": 0.0018,
|
1251 |
+
"rewards/accuracies": 1.0,
|
1252 |
+
"rewards/chosen": 1.0979222059249878,
|
1253 |
+
"rewards/margins": 16.30962562561035,
|
1254 |
+
"rewards/rejected": -15.211705207824707,
|
1255 |
+
"step": 800
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 2.56,
|
1259 |
+
"eval_logits/chosen": -2.076233148574829,
|
1260 |
+
"eval_logits/rejected": -2.10378098487854,
|
1261 |
+
"eval_logps/chosen": -289.43609619140625,
|
1262 |
+
"eval_logps/rejected": -310.7235412597656,
|
1263 |
+
"eval_loss": 1.015881061553955,
|
1264 |
+
"eval_rewards/accuracies": 0.5873016119003296,
|
1265 |
+
"eval_rewards/chosen": -5.250052452087402,
|
1266 |
+
"eval_rewards/margins": 0.5843777656555176,
|
1267 |
+
"eval_rewards/rejected": -5.834429740905762,
|
1268 |
+
"eval_runtime": 135.0469,
|
1269 |
+
"eval_samples_per_second": 7.405,
|
1270 |
+
"eval_steps_per_second": 0.467,
|
1271 |
+
"step": 800
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 2.6,
|
1275 |
+
"learning_rate": 7.482185273159145e-08,
|
1276 |
+
"logits/chosen": -2.072613477706909,
|
1277 |
+
"logits/rejected": -2.0949771404266357,
|
1278 |
+
"logps/chosen": -245.9056854248047,
|
1279 |
+
"logps/rejected": -431.50079345703125,
|
1280 |
+
"loss": 0.0015,
|
1281 |
+
"rewards/accuracies": 1.0,
|
1282 |
+
"rewards/chosen": 1.3889291286468506,
|
1283 |
+
"rewards/margins": 18.065763473510742,
|
1284 |
+
"rewards/rejected": -16.676836013793945,
|
1285 |
+
"step": 810
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"epoch": 2.63,
|
1289 |
+
"learning_rate": 6.88836104513064e-08,
|
1290 |
+
"logits/chosen": -2.1127004623413086,
|
1291 |
+
"logits/rejected": -2.095151424407959,
|
1292 |
+
"logps/chosen": -224.3485565185547,
|
1293 |
+
"logps/rejected": -392.89373779296875,
|
1294 |
+
"loss": 0.0016,
|
1295 |
+
"rewards/accuracies": 1.0,
|
1296 |
+
"rewards/chosen": 1.0925308465957642,
|
1297 |
+
"rewards/margins": 16.016094207763672,
|
1298 |
+
"rewards/rejected": -14.923563957214355,
|
1299 |
+
"step": 820
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 2.66,
|
1303 |
+
"learning_rate": 6.294536817102138e-08,
|
1304 |
+
"logits/chosen": -2.043457508087158,
|
1305 |
+
"logits/rejected": -2.0708208084106445,
|
1306 |
+
"logps/chosen": -245.05282592773438,
|
1307 |
+
"logps/rejected": -444.1641540527344,
|
1308 |
+
"loss": 0.0022,
|
1309 |
+
"rewards/accuracies": 1.0,
|
1310 |
+
"rewards/chosen": 1.6503627300262451,
|
1311 |
+
"rewards/margins": 18.23184585571289,
|
1312 |
+
"rewards/rejected": -16.58148193359375,
|
1313 |
+
"step": 830
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 2.69,
|
1317 |
+
"learning_rate": 5.700712589073634e-08,
|
1318 |
+
"logits/chosen": -2.0662128925323486,
|
1319 |
+
"logits/rejected": -2.0693325996398926,
|
1320 |
+
"logps/chosen": -219.8564910888672,
|
1321 |
+
"logps/rejected": -358.3108215332031,
|
1322 |
+
"loss": 0.002,
|
1323 |
+
"rewards/accuracies": 1.0,
|
1324 |
+
"rewards/chosen": -0.03243887424468994,
|
1325 |
+
"rewards/margins": 13.410202026367188,
|
1326 |
+
"rewards/rejected": -13.442642211914062,
|
1327 |
+
"step": 840
|
1328 |
+
},
|
1329 |
+
{
|
1330 |
+
"epoch": 2.72,
|
1331 |
+
"learning_rate": 5.10688836104513e-08,
|
1332 |
+
"logits/chosen": -2.0619301795959473,
|
1333 |
+
"logits/rejected": -2.0707077980041504,
|
1334 |
+
"logps/chosen": -218.51416015625,
|
1335 |
+
"logps/rejected": -394.4737243652344,
|
1336 |
+
"loss": 0.0008,
|
1337 |
+
"rewards/accuracies": 1.0,
|
1338 |
+
"rewards/chosen": 0.7091328501701355,
|
1339 |
+
"rewards/margins": 15.42210865020752,
|
1340 |
+
"rewards/rejected": -14.712974548339844,
|
1341 |
+
"step": 850
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 2.76,
|
1345 |
+
"learning_rate": 4.5130641330166267e-08,
|
1346 |
+
"logits/chosen": -2.098428964614868,
|
1347 |
+
"logits/rejected": -2.1084647178649902,
|
1348 |
+
"logps/chosen": -253.61538696289062,
|
1349 |
+
"logps/rejected": -429.78759765625,
|
1350 |
+
"loss": 0.002,
|
1351 |
+
"rewards/accuracies": 1.0,
|
1352 |
+
"rewards/chosen": 1.4912437200546265,
|
1353 |
+
"rewards/margins": 17.59982681274414,
|
1354 |
+
"rewards/rejected": -16.108583450317383,
|
1355 |
+
"step": 860
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 2.79,
|
1359 |
+
"learning_rate": 3.919239904988123e-08,
|
1360 |
+
"logits/chosen": -2.1191351413726807,
|
1361 |
+
"logits/rejected": -2.1331193447113037,
|
1362 |
+
"logps/chosen": -219.34622192382812,
|
1363 |
+
"logps/rejected": -370.738037109375,
|
1364 |
+
"loss": 0.0105,
|
1365 |
+
"rewards/accuracies": 1.0,
|
1366 |
+
"rewards/chosen": 0.8942230939865112,
|
1367 |
+
"rewards/margins": 14.622076034545898,
|
1368 |
+
"rewards/rejected": -13.727853775024414,
|
1369 |
+
"step": 870
|
1370 |
+
},
|
1371 |
+
{
|
1372 |
+
"epoch": 2.82,
|
1373 |
+
"learning_rate": 3.32541567695962e-08,
|
1374 |
+
"logits/chosen": -2.104769229888916,
|
1375 |
+
"logits/rejected": -2.111499309539795,
|
1376 |
+
"logps/chosen": -249.5308380126953,
|
1377 |
+
"logps/rejected": -430.3035583496094,
|
1378 |
+
"loss": 0.0016,
|
1379 |
+
"rewards/accuracies": 1.0,
|
1380 |
+
"rewards/chosen": 0.38554805517196655,
|
1381 |
+
"rewards/margins": 14.73956298828125,
|
1382 |
+
"rewards/rejected": -14.354013442993164,
|
1383 |
+
"step": 880
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 2.85,
|
1387 |
+
"learning_rate": 2.7315914489311164e-08,
|
1388 |
+
"logits/chosen": -2.1363842487335205,
|
1389 |
+
"logits/rejected": -2.141021490097046,
|
1390 |
+
"logps/chosen": -232.86355590820312,
|
1391 |
+
"logps/rejected": -376.73626708984375,
|
1392 |
+
"loss": 0.0025,
|
1393 |
+
"rewards/accuracies": 1.0,
|
1394 |
+
"rewards/chosen": 0.6885503530502319,
|
1395 |
+
"rewards/margins": 13.440515518188477,
|
1396 |
+
"rewards/rejected": -12.75196361541748,
|
1397 |
+
"step": 890
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 2.88,
|
1401 |
+
"learning_rate": 2.1377672209026125e-08,
|
1402 |
+
"logits/chosen": -2.136543035507202,
|
1403 |
+
"logits/rejected": -2.1440882682800293,
|
1404 |
+
"logps/chosen": -252.4918975830078,
|
1405 |
+
"logps/rejected": -385.3263854980469,
|
1406 |
+
"loss": 0.0128,
|
1407 |
+
"rewards/accuracies": 1.0,
|
1408 |
+
"rewards/chosen": 1.040738582611084,
|
1409 |
+
"rewards/margins": 14.618490219116211,
|
1410 |
+
"rewards/rejected": -13.577753067016602,
|
1411 |
+
"step": 900
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"epoch": 2.88,
|
1415 |
+
"eval_logits/chosen": -2.1040961742401123,
|
1416 |
+
"eval_logits/rejected": -2.13144588470459,
|
1417 |
+
"eval_logps/chosen": -289.4458312988281,
|
1418 |
+
"eval_logps/rejected": -310.62359619140625,
|
1419 |
+
"eval_loss": 1.0216755867004395,
|
1420 |
+
"eval_rewards/accuracies": 0.5753968358039856,
|
1421 |
+
"eval_rewards/chosen": -5.25102424621582,
|
1422 |
+
"eval_rewards/margins": 0.5734108090400696,
|
1423 |
+
"eval_rewards/rejected": -5.824434757232666,
|
1424 |
+
"eval_runtime": 135.1223,
|
1425 |
+
"eval_samples_per_second": 7.401,
|
1426 |
+
"eval_steps_per_second": 0.466,
|
1427 |
+
"step": 900
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 2.92,
|
1431 |
+
"learning_rate": 1.5439429928741092e-08,
|
1432 |
+
"logits/chosen": -2.087221622467041,
|
1433 |
+
"logits/rejected": -2.0887157917022705,
|
1434 |
+
"logps/chosen": -234.03524780273438,
|
1435 |
+
"logps/rejected": -412.8173828125,
|
1436 |
+
"loss": 0.0013,
|
1437 |
+
"rewards/accuracies": 1.0,
|
1438 |
+
"rewards/chosen": 0.5808283090591431,
|
1439 |
+
"rewards/margins": 14.590052604675293,
|
1440 |
+
"rewards/rejected": -14.009223937988281,
|
1441 |
+
"step": 910
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 2.95,
|
1445 |
+
"learning_rate": 9.501187648456057e-09,
|
1446 |
+
"logits/chosen": -2.142925262451172,
|
1447 |
+
"logits/rejected": -2.151294231414795,
|
1448 |
+
"logps/chosen": -233.02587890625,
|
1449 |
+
"logps/rejected": -392.322998046875,
|
1450 |
+
"loss": 0.0016,
|
1451 |
+
"rewards/accuracies": 1.0,
|
1452 |
+
"rewards/chosen": 0.5956318974494934,
|
1453 |
+
"rewards/margins": 14.147176742553711,
|
1454 |
+
"rewards/rejected": -13.551542282104492,
|
1455 |
+
"step": 920
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 2.98,
|
1459 |
+
"learning_rate": 3.562945368171021e-09,
|
1460 |
+
"logits/chosen": -2.0257132053375244,
|
1461 |
+
"logits/rejected": -2.0395452976226807,
|
1462 |
+
"logps/chosen": -239.80917358398438,
|
1463 |
+
"logps/rejected": -391.6462097167969,
|
1464 |
+
"loss": 0.0017,
|
1465 |
+
"rewards/accuracies": 1.0,
|
1466 |
+
"rewards/chosen": 0.49750471115112305,
|
1467 |
+
"rewards/margins": 14.218188285827637,
|
1468 |
+
"rewards/rejected": -13.720685005187988,
|
1469 |
+
"step": 930
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 3.0,
|
1473 |
+
"step": 936,
|
1474 |
+
"total_flos": 0.0,
|
1475 |
+
"train_loss": 0.23198359412724215,
|
1476 |
+
"train_runtime": 18849.1473,
|
1477 |
+
"train_samples_per_second": 3.176,
|
1478 |
+
"train_steps_per_second": 0.05
|
1479 |
+
}
|
1480 |
+
],
|
1481 |
+
"logging_steps": 10,
|
1482 |
+
"max_steps": 936,
|
1483 |
+
"num_train_epochs": 3,
|
1484 |
+
"save_steps": 500,
|
1485 |
+
"total_flos": 0.0,
|
1486 |
+
"trial_name": null,
|
1487 |
+
"trial_params": null
|
1488 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0146b1e026c3755b9ce6657de088dc487cc8f0a8712bd7ec986a00817b9b3fb5
|
3 |
+
size 5307
|