File size: 12,690 Bytes
818f6e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
base_model: HuggingFaceH4/zephyr-7b-gemma-sft-v0.1
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
datasets:
- argilla/dpo-mix-7k
pipeline_tag: text-generation
model-index:
- name: zephyr-7b-gemma
results:
# MT-Bench (taken from model card)
- task:
type: text-generation
name: Text Generation
dataset:
name: MT-Bench
type: unknown
metrics:
- type: unknown
name: score
value: 7.81
source:
url: https://huggingface.co/spaces/lmsys/mt-bench
---
<img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png" alt="Zephyr 7B Gemma Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Model Card for Zephyr 7B Gemma
Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr 7B Gemma is the third model in the series, and is a fine-tuned version of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) that was trained on on a mix of publicly available, synthetic datasets using Direct Preference Optimization (DPO). You can reproduce the training of this model via the recipe provided in the [Alignment Handbook](https://github.com/huggingface/alignment-handbook).
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily English
- **License:** Gemma Terms of Use
- **Finetuned from model:** [google/gemma-7b](https://huggingface.co/google/gemma-7b)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/huggingface/alignment-handbook
- **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-7b-gemma-chat
## Performance
| Model |MT Bench⬇️|IFEval|
|-----------------------------------------------------------------------|------:|------:|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)| 7.81 | 28.76|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 7.34 | 43.81|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 6.38 | 38.01|
| Model |AGIEval|GPT4All|TruthfulQA|BigBench|Average ⬇️|
|-----------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) | 37.52| 71.77| 55.26| 39.77| 51.08|
|[zephyr-7b-gemma-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1)| 34.22| 66.37| 52.19| 37.10| 47.47|
|[mlabonne/Gemmalpaca-7B](https://huggingface.co/mlabonne/Gemmalpaca-7B)| 21.6 | 40.87| 44.85 | 30.49| 34.45|
|[google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 21.33| 40.84| 41.70| 30.25| 33.53|
<details><summary>Details of AGIEval, GPT4All, TruthfulQA, BigBench </summary>
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |21.65|± | 2.59|
| | |acc_norm|25.20|± | 2.73|
|agieval_logiqa_en | 0|acc |34.72|± | 1.87|
| | |acc_norm|35.94|± | 1.88|
|agieval_lsat_ar | 0|acc |19.57|± | 2.62|
| | |acc_norm|21.74|± | 2.73|
|agieval_lsat_lr | 0|acc |30.59|± | 2.04|
| | |acc_norm|32.55|± | 2.08|
|agieval_lsat_rc | 0|acc |49.07|± | 3.05|
| | |acc_norm|42.75|± | 3.02|
|agieval_sat_en | 0|acc |54.85|± | 3.48|
| | |acc_norm|53.40|± | 3.48|
|agieval_sat_en_without_passage| 0|acc |37.38|± | 3.38|
| | |acc_norm|33.98|± | 3.31|
|agieval_sat_math | 0|acc |30.91|± | 3.12|
| | |acc_norm|28.18|± | 3.04|
Average: 34.22%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |49.15|± | 1.46|
| | |acc_norm|52.47|± | 1.46|
|arc_easy | 0|acc |77.44|± | 0.86|
| | |acc_norm|74.75|± | 0.89|
|boolq | 1|acc |79.69|± | 0.70|
|hellaswag | 0|acc |60.59|± | 0.49|
| | |acc_norm|78.00|± | 0.41|
|openbookqa | 0|acc |29.20|± | 2.04|
| | |acc_norm|37.80|± | 2.17|
|piqa | 0|acc |76.82|± | 0.98|
| | |acc_norm|77.80|± | 0.97|
|winogrande | 0|acc |64.09|± | 1.35|
Average: 66.37%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |35.74|± | 1.68|
| | |mc2 |52.19|± | 1.59|
Average: 52.19%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|53.68|± | 3.63|
|bigbench_date_understanding | 0|multiple_choice_grade|59.89|± | 2.55|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|30.23|± | 2.86|
|bigbench_geometric_shapes | 0|multiple_choice_grade|11.42|± | 1.68|
| | |exact_str_match | 0.00|± | 0.00|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|28.40|± | 2.02|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|19.14|± | 1.49|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|44.67|± | 2.88|
|bigbench_movie_recommendation | 0|multiple_choice_grade|26.80|± | 1.98|
|bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|52.75|± | 1.12|
|bigbench_ruin_names | 0|multiple_choice_grade|33.04|± | 2.22|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|33.37|± | 1.49|
|bigbench_snarks | 0|multiple_choice_grade|48.62|± | 3.73|
|bigbench_sports_understanding | 0|multiple_choice_grade|58.11|± | 1.57|
|bigbench_temporal_sequences | 0|multiple_choice_grade|37.20|± | 1.53|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|20.08|± | 1.13|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|15.77|± | 0.87|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|44.67|± | 2.88|
Average: 37.1%
</details>
## Intended uses & limitations
The model was initially fine-tuned on the [DEITA 10K](https://huggingface.co/datasets/HuggingFaceH4/deita-10k-v0-sft) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [argilla/dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k) dataset, which contains 7k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
```python
# pip install transformers>=4.38.2
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline(
"text-generation",
model="HuggingFaceH4/zephyr-7b-gemma-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16,
)
messages = [
{
"role": "system",
"content": "", # Model not yet trained for follow this
},
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
outputs = pipe(
messages,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95,
stop_sequence="<|im_end|>",
)
print(outputs[0]["generated_text"][-1]["content"])
# It is not possible for a human to eat a helicopter in one sitting, as a
# helicopter is a large and inedible machine. Helicopters are made of metal,
# plastic, and other materials that are not meant to be consumed by humans.
# Eating a helicopter would be extremely dangerous and would likely cause
# serious health problems, including choking, suffocation, and poisoning. It is
# important to only eat food that is safe and intended for human consumption.
```
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
Zephyr 7B Gemma has not been aligned to human preferences for safety within the RLHF phase or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`google/gemma-7b`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [StarCoder2 model card](https://huggingface.co/bigcode/starcoder2-15b) for an example of this.
## Training and evaluation data
This model is a fine-tuned version of [HuggingFaceH4/zephyr-7b-gemma-sft-v0.1](https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1) on the argilla/dpo-mix-7k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4695
- Rewards/chosen: -3.3746
- Rewards/rejected: -4.9715
- Rewards/accuracies: 0.7188
- Rewards/margins: 1.5970
- Logps/rejected: -459.4853
- Logps/chosen: -429.9115
- Logits/rejected: 86.4684
- Logits/chosen: 92.8200
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.1923 | 1.9 | 100 | 0.4736 | -3.4575 | -4.9556 | 0.75 | 1.4980 | -459.1662 | -431.5707 | 86.3863 | 92.7360 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.1
## Citation Information
If you find this model useful in your work, please consider citing the Zephyr technical report:
```
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
You may also wish to cite the creators of this model as well:
```
@misc{zephyr_7b_gemma,
author = {Lewis Tunstall and Philipp Schmid},
title = {Zephyr 7B Gemma},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
howpublished = {\url{https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1}}
}
```
|