Loriiis commited on
Commit
d13a41d
·
1 Parent(s): 6ae74d9

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 249.10 +/- 21.05
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781f31509630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781f315096c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781f31509750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781f315097e0>", "_build": "<function ActorCriticPolicy._build at 0x781f31509870>", "forward": "<function ActorCriticPolicy.forward at 0x781f31509900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781f31509990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781f31509a20>", "_predict": "<function ActorCriticPolicy._predict at 0x781f31509ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781f31509b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781f31509bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x781f31509c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x781f316aa780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698854399872103806, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM7igL47llw/x1ScvvBu8L7Li3m+diqwvAAAAAAAAAAA800DPhQWoLpYyVW+gU4xvHKlCz5yh26+AACAPwAAAAC1+uK+8uhxPyKKQr5rAga/NszcvoklHj0AAAAAAAAAAHM3473DGSu6LBWeulWy+bXpeAq5JSG1OQAAgD8AAAAAmvHsvEgHkrpyJI00g3+DMLXpnLnaWWqzAACAPwAAgD8aIji9Rop5P/74Jb1ZGym/j14eviEwQz0AAAAAAAAAAKDDDL5fqhA/CC0FPpR52L53VJ+9x5yMPAAAAAAAAAAA2sTbva7liLq5+pq6ekfAtRXh7rgmLrQ5AACAPwAAAACNnw++j6NcP55/X765BwO/IEZAvltka7sAAAAAAAAAAM0gP73hhIq6BjEktjE0NbHRdVw6t68+NQAAgD8AAIA/Khiyvh+/Vj96KDO+vInmvnElub7NdIs9AAAAAAAAAACQ2Wi+9Pf1vKKiQ7yUo8K6zr9dPr5PkzsAAIA/AACAP7gRkb7n/64+jgmLPgIbqb5B2gG9Kr6PPQAAAAAAAAAAsz27vduGmT8lAjm+kzUVv/y8G75eJv69AAAAAAAAAABNmN+9UtCmuQqDkDkVznM0eEpKO4L0q7gAAIA/AAAAAOZ8o717XKg58BZINzFmUjJfR626wkp5tgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDFgwCbMHOMAWyUTRwBjAF0lEdAkUj02UB4lnV9lChoBkdAchHmq5sj3WgHS9BoCEdAkUkCxiXpn3V9lChoBkdAclI0ALiMpGgHS+xoCEdAkUlKsEJSi3V9lChoBkdAcErhf0Eov2gHS/poCEdAkUl7NW2gF3V9lChoBkdAcSwiUgSvkmgHS/FoCEdAkUl486mwaHV9lChoBkdATEKxcE/0NGgHS7poCEdAkUrBhttQ9HV9lChoBkdAbjcrK/20zGgHS+RoCEdAkUsf9tMwlHV9lChoBkdAcQTzt1IRRWgHS+NoCEdAkUwTYNAkcHV9lChoBkdAcU1LlFMIvGgHS+JoCEdAkUxFrM1TBXV9lChoBkdAcUPnmq5sj2gHS9BoCEdAkU29b9qDb3V9lChoBkdAcJ5D0Dlo12gHS/RoCEdAkU3yW/rSmnV9lChoBkdAcbo4pMHryGgHS/VoCEdAkU50auOjqXV9lChoBkdAcmM3Qla8pWgHS/xoCEdAkU5+b3Gn43V9lChoBkdAcTU0ulGgBmgHS91oCEdAkU86FZgXuXV9lChoBkdAcbb55qubJGgHTUsBaAhHQJFPObYsd1d1fZQoaAZHQG4sFBY3eepoB0vaaAhHQJFP9d+ocaR1fZQoaAZHQG9HZxJd0JZoB0vfaAhHQJFQHxkNF0B1fZQoaAZHQHD3PNu+AVhoB0voaAhHQJFQMfGMn7Z1fZQoaAZHQHCfB3NcGC9oB0v0aAhHQJFQSyC4Bmx1fZQoaAZHQHJxDSG8EmpoB00nAWgIR0CRUcj3mFJydX2UKGgGR0BxLx2hZha1aAdL7GgIR0CRUgxz7uUmdX2UKGgGR0BxTtWMju8caAdL4GgIR0CRUheaKDTSdX2UKGgGR0BxgyEvkBCEaAdL5GgIR0CRU1icG1QZdX2UKGgGR0BvTNRLsa86aAdL42gIR0CRVSDB/I8ydX2UKGgGR0BxtmHKwIMSaAdL+mgIR0CRVrAskIHDdX2UKGgGR0Bxg4iosI3SaAdL9WgIR0CRV3+49X9zdX2UKGgGR0BwvZ/BnBciaAdL2WgIR0CRV8f51vETdX2UKGgGR0BxJVw84gieaAdL/GgIR0CRV8gHeJpGdX2UKGgGR0BvRmYWtU4raAdL8WgIR0CRWIU47zTXdX2UKGgGR0ByufGtITXbaAdNLQFoCEdAkVi4sNDtxHV9lChoBkdAcmUoMKCxvGgHTXwBaAhHQJFY2Vlf7aZ1fZQoaAZHQHCDPcBU70ZoB00DAWgIR0CRWOSde6ZqdX2UKGgGR0BQS54W1twaaAdLymgIR0CRWPzPrv9cdX2UKGgGR0Bx/6gSOBDpaAdNDgFoCEdAkVlh8pkPMHV9lChoBkdAcQhWWyC4BmgHS9poCEdAkVnKPOpsGnV9lChoBkdAbppT4L1EmmgHS9RoCEdAkVraMvRJE3V9lChoBkfAJE4R28qWkmgHS7toCEdAkV/6m8/Uv3V9lChoBkdAb9FyfcvdumgHTaYDaAhHQJFgQyXUpd91fZQoaAZHQHBVOstCiRJoB0v2aAhHQJFgn/0dzXB1fZQoaAZHQHDWczqKP4poB0vqaAhHQJFg/undfsx1fZQoaAZHQHNZ1rhzeXRoB0v1aAhHQJFh5agVXV91fZQoaAZHQHEobux8lX1oB0vJaAhHQJFiBtFa0Qd1fZQoaAZHQHJvDfixVyZoB0vZaAhHQJFiKoegctJ1fZQoaAZHQG17NVaOgg5oB00BAWgIR0CRYm3hn8KpdX2UKGgGR0ByPaakRBeHaAdNBAFoCEdAkXlyQ5myxHV9lChoBkdAcoAeXiR4hWgHTRABaAhHQJF5rms/6ft1fZQoaAZHQG/G4l6Z6UtoB0vuaAhHQJF5rB68g6l1fZQoaAZHQHIk5gPVd5ZoB00VAWgIR0CRefGHHmzTdX2UKGgGR0ByWGGtZFG5aAdNfAFoCEdAkXozziCJ43V9lChoBkdAcmnlYU34sWgHS+JoCEdAkXpfYJ3PiXV9lChoBkdAcw6eZG8VYmgHTecBaAhHQJF6gLH+6y11fZQoaAZHQHN7JFkQPI5oB0v3aAhHQJF+Q9A5aNd1fZQoaAZHQHHONPLxI8RoB0vraAhHQJF/NdIGyHF1fZQoaAZHQHIa3Fkxyn1oB00UAWgIR0CRf4lQMx46dX2UKGgGR0BwCA150KZ2aAdL9GgIR0CRf6VvddmhdX2UKGgGR0BxEjb9If8uaAdNDAFoCEdAkX++DjBEa3V9lChoBkdAc2XuGbkOqmgHS9ZoCEdAkYBSmALApXV9lChoBkdAceOIuoP07WgHS/9oCEdAkYBQ8bJfY3V9lChoBkdAcNxqqOtGNWgHS+hoCEdAkYCtcbBGhHV9lChoBkdAcIbWP91loWgHTRMBaAhHQJGAxpM6BAh1fZQoaAZHQG8c9adMCcRoB0vTaAhHQJGBJtxdY4h1fZQoaAZHQHEqFhG6PKdoB01EAWgIR0CRgVEhq0tzdX2UKGgGR0BytZxIatLdaAdL92gIR0CRgVP69CeFdX2UKGgGR0BzXN6kZaV2aAdNUgNoCEdAkYGJAIIF/3V9lChoBkdAcx5hKUVzqGgHS/hoCEdAkYGUZm7J4nV9lChoBkdAcRRgEU0vXmgHTQ0BaAhHQJGCRNdqtYB1fZQoaAZHQHEVzxwyZa5oB00SAWgIR0CRgoM7EHdHdX2UKGgGR0BxRLAWSEDhaAdLwWgIR0CRg7XCj1wpdX2UKGgGR0Bxf96+nIhhaAdLz2gIR0CRhQI+nqFAdX2UKGgGR0Bw68kSmIj4aAdL02gIR0CRhUucMEzPdX2UKGgGR0BxusJ3PiT/aAdLxmgIR0CRhkA+6iCbdX2UKGgGR0BuI+eg+QlsaAdL22gIR0CRhzGu9vjwdX2UKGgGR0Bxy5eUpuuSaAdL92gIR0CRh5A9FF2FdX2UKGgGR0BxM/pnpSrHaAdNBAFoCEdAkYeK8UVSGnV9lChoBkdAcR6fzBhx52gHTSkBaAhHQJGHr8dgfEJ1fZQoaAZHQHGnBaHKwINoB00cAWgIR0CRiEnqVyFPdX2UKGgGR0BykbkJa7mMaAdNFgFoCEdAkYh0nG828HV9lChoBkdAbrtUx20Re2gHS/loCEdAkYiLhm5DqnV9lChoBkdAcYHGtITXa2gHS9poCEdAkYjYnKGL1nV9lChoBkdAcumY0l7dBWgHTVkBaAhHQJGJgGjbi6x1fZQoaAZHQHAxHKr7wa1oB0vyaAhHQJGOX04BFNN1fZQoaAZHQHBKRfrrxAloB00QAWgIR0CRjl5VfeDWdX2UKGgGR0By5JGc4HX3aAdNJAFoCEdAkY67bDdgv3V9lChoBkdAQrAIQe3hGmgHS75oCEdAkY7cvysjmnV9lChoBkdAcJXh7VrhzmgHTQ4BaAhHQJGQbn4fwJB1fZQoaAZHQHOnkMoc7yRoB00NAWgIR0CRkMDPnjhldX2UKGgGR0BxW6enQ6ZIaAdL+2gIR0CRkPaisXBQdX2UKGgGR0Bv7LLdN34caAdL92gIR0CRkRnNgSezdX2UKGgGR0BxfpDWsijdaAdNGAFoCEdAkZFPkmx+rnV9lChoBkdAb2pftQbdamgHS/doCEdAkZF4G2TgVHV9lChoBkdAcE2By0a6z2gHTSMBaAhHQJGRjtVrAQB1fZQoaAZHQHLmnGff4ypoB00NAWgIR0CRkvtsenyedX2UKGgGR0BybdAB1cMWaAdLz2gIR0CRlb+ocaOxdX2UKGgGR0BwZe/yoXKsaAdL3GgIR0CRlkJhOP/8dX2UKGgGR0BBI7iQ1aW5aAdLnmgIR0CRly6XjU/fdX2UKGgGR0BxLJQj2SMcaAdL72gIR0CRl4s/IKc/dX2UKGgGR0ByswC/47A+aAdL/mgIR0CRl/isGPgfdX2UKGgGR0Bxghsxfv4NaAdL12gIR0CRmDRaHKwIdX2UKGgGR0BNGCgCfYjCaAdLvGgIR0CRmD+MZP2xdX2UKGgGR0BveR6Y3Ns4aAdLz2gIR0CRmGd/rjYJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd5fe56eb4504cef09a6b7a29cb07afe36a36db95a79bfb514a5c88ae07e2452
3
+ size 147966
ppo-LunarLander-v2-2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x781f31509630>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781f315096c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781f31509750>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781f315097e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x781f31509870>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x781f31509900>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x781f31509990>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781f31509a20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x781f31509ab0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781f31509b40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781f31509bd0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x781f31509c60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x781f316aa780>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1698854399872103806,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM7igL47llw/x1ScvvBu8L7Li3m+diqwvAAAAAAAAAAA800DPhQWoLpYyVW+gU4xvHKlCz5yh26+AACAPwAAAAC1+uK+8uhxPyKKQr5rAga/NszcvoklHj0AAAAAAAAAAHM3473DGSu6LBWeulWy+bXpeAq5JSG1OQAAgD8AAAAAmvHsvEgHkrpyJI00g3+DMLXpnLnaWWqzAACAPwAAgD8aIji9Rop5P/74Jb1ZGym/j14eviEwQz0AAAAAAAAAAKDDDL5fqhA/CC0FPpR52L53VJ+9x5yMPAAAAAAAAAAA2sTbva7liLq5+pq6ekfAtRXh7rgmLrQ5AACAPwAAAACNnw++j6NcP55/X765BwO/IEZAvltka7sAAAAAAAAAAM0gP73hhIq6BjEktjE0NbHRdVw6t68+NQAAgD8AAIA/Khiyvh+/Vj96KDO+vInmvnElub7NdIs9AAAAAAAAAACQ2Wi+9Pf1vKKiQ7yUo8K6zr9dPr5PkzsAAIA/AACAP7gRkb7n/64+jgmLPgIbqb5B2gG9Kr6PPQAAAAAAAAAAsz27vduGmT8lAjm+kzUVv/y8G75eJv69AAAAAAAAAABNmN+9UtCmuQqDkDkVznM0eEpKO4L0q7gAAIA/AAAAAOZ8o717XKg58BZINzFmUjJfR626wkp5tgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVAQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDFgwCbMHOMAWyUTRwBjAF0lEdAkUj02UB4lnV9lChoBkdAchHmq5sj3WgHS9BoCEdAkUkCxiXpn3V9lChoBkdAclI0ALiMpGgHS+xoCEdAkUlKsEJSi3V9lChoBkdAcErhf0Eov2gHS/poCEdAkUl7NW2gF3V9lChoBkdAcSwiUgSvkmgHS/FoCEdAkUl486mwaHV9lChoBkdATEKxcE/0NGgHS7poCEdAkUrBhttQ9HV9lChoBkdAbjcrK/20zGgHS+RoCEdAkUsf9tMwlHV9lChoBkdAcQTzt1IRRWgHS+NoCEdAkUwTYNAkcHV9lChoBkdAcU1LlFMIvGgHS+JoCEdAkUxFrM1TBXV9lChoBkdAcUPnmq5sj2gHS9BoCEdAkU29b9qDb3V9lChoBkdAcJ5D0Dlo12gHS/RoCEdAkU3yW/rSmnV9lChoBkdAcbo4pMHryGgHS/VoCEdAkU50auOjqXV9lChoBkdAcmM3Qla8pWgHS/xoCEdAkU5+b3Gn43V9lChoBkdAcTU0ulGgBmgHS91oCEdAkU86FZgXuXV9lChoBkdAcbb55qubJGgHTUsBaAhHQJFPObYsd1d1fZQoaAZHQG4sFBY3eepoB0vaaAhHQJFP9d+ocaR1fZQoaAZHQG9HZxJd0JZoB0vfaAhHQJFQHxkNF0B1fZQoaAZHQHD3PNu+AVhoB0voaAhHQJFQMfGMn7Z1fZQoaAZHQHCfB3NcGC9oB0v0aAhHQJFQSyC4Bmx1fZQoaAZHQHJxDSG8EmpoB00nAWgIR0CRUcj3mFJydX2UKGgGR0BxLx2hZha1aAdL7GgIR0CRUgxz7uUmdX2UKGgGR0BxTtWMju8caAdL4GgIR0CRUheaKDTSdX2UKGgGR0BxgyEvkBCEaAdL5GgIR0CRU1icG1QZdX2UKGgGR0BvTNRLsa86aAdL42gIR0CRVSDB/I8ydX2UKGgGR0BxtmHKwIMSaAdL+mgIR0CRVrAskIHDdX2UKGgGR0Bxg4iosI3SaAdL9WgIR0CRV3+49X9zdX2UKGgGR0BwvZ/BnBciaAdL2WgIR0CRV8f51vETdX2UKGgGR0BxJVw84gieaAdL/GgIR0CRV8gHeJpGdX2UKGgGR0BvRmYWtU4raAdL8WgIR0CRWIU47zTXdX2UKGgGR0ByufGtITXbaAdNLQFoCEdAkVi4sNDtxHV9lChoBkdAcmUoMKCxvGgHTXwBaAhHQJFY2Vlf7aZ1fZQoaAZHQHCDPcBU70ZoB00DAWgIR0CRWOSde6ZqdX2UKGgGR0BQS54W1twaaAdLymgIR0CRWPzPrv9cdX2UKGgGR0Bx/6gSOBDpaAdNDgFoCEdAkVlh8pkPMHV9lChoBkdAcQhWWyC4BmgHS9poCEdAkVnKPOpsGnV9lChoBkdAbppT4L1EmmgHS9RoCEdAkVraMvRJE3V9lChoBkfAJE4R28qWkmgHS7toCEdAkV/6m8/Uv3V9lChoBkdAb9FyfcvdumgHTaYDaAhHQJFgQyXUpd91fZQoaAZHQHBVOstCiRJoB0v2aAhHQJFgn/0dzXB1fZQoaAZHQHDWczqKP4poB0vqaAhHQJFg/undfsx1fZQoaAZHQHNZ1rhzeXRoB0v1aAhHQJFh5agVXV91fZQoaAZHQHEobux8lX1oB0vJaAhHQJFiBtFa0Qd1fZQoaAZHQHJvDfixVyZoB0vZaAhHQJFiKoegctJ1fZQoaAZHQG17NVaOgg5oB00BAWgIR0CRYm3hn8KpdX2UKGgGR0ByPaakRBeHaAdNBAFoCEdAkXlyQ5myxHV9lChoBkdAcoAeXiR4hWgHTRABaAhHQJF5rms/6ft1fZQoaAZHQG/G4l6Z6UtoB0vuaAhHQJF5rB68g6l1fZQoaAZHQHIk5gPVd5ZoB00VAWgIR0CRefGHHmzTdX2UKGgGR0ByWGGtZFG5aAdNfAFoCEdAkXozziCJ43V9lChoBkdAcmnlYU34sWgHS+JoCEdAkXpfYJ3PiXV9lChoBkdAcw6eZG8VYmgHTecBaAhHQJF6gLH+6y11fZQoaAZHQHN7JFkQPI5oB0v3aAhHQJF+Q9A5aNd1fZQoaAZHQHHONPLxI8RoB0vraAhHQJF/NdIGyHF1fZQoaAZHQHIa3Fkxyn1oB00UAWgIR0CRf4lQMx46dX2UKGgGR0BwCA150KZ2aAdL9GgIR0CRf6VvddmhdX2UKGgGR0BxEjb9If8uaAdNDAFoCEdAkX++DjBEa3V9lChoBkdAc2XuGbkOqmgHS9ZoCEdAkYBSmALApXV9lChoBkdAceOIuoP07WgHS/9oCEdAkYBQ8bJfY3V9lChoBkdAcNxqqOtGNWgHS+hoCEdAkYCtcbBGhHV9lChoBkdAcIbWP91loWgHTRMBaAhHQJGAxpM6BAh1fZQoaAZHQG8c9adMCcRoB0vTaAhHQJGBJtxdY4h1fZQoaAZHQHEqFhG6PKdoB01EAWgIR0CRgVEhq0tzdX2UKGgGR0BytZxIatLdaAdL92gIR0CRgVP69CeFdX2UKGgGR0BzXN6kZaV2aAdNUgNoCEdAkYGJAIIF/3V9lChoBkdAcx5hKUVzqGgHS/hoCEdAkYGUZm7J4nV9lChoBkdAcRRgEU0vXmgHTQ0BaAhHQJGCRNdqtYB1fZQoaAZHQHEVzxwyZa5oB00SAWgIR0CRgoM7EHdHdX2UKGgGR0BxRLAWSEDhaAdLwWgIR0CRg7XCj1wpdX2UKGgGR0Bxf96+nIhhaAdLz2gIR0CRhQI+nqFAdX2UKGgGR0Bw68kSmIj4aAdL02gIR0CRhUucMEzPdX2UKGgGR0BxusJ3PiT/aAdLxmgIR0CRhkA+6iCbdX2UKGgGR0BuI+eg+QlsaAdL22gIR0CRhzGu9vjwdX2UKGgGR0Bxy5eUpuuSaAdL92gIR0CRh5A9FF2FdX2UKGgGR0BxM/pnpSrHaAdNBAFoCEdAkYeK8UVSGnV9lChoBkdAcR6fzBhx52gHTSkBaAhHQJGHr8dgfEJ1fZQoaAZHQHGnBaHKwINoB00cAWgIR0CRiEnqVyFPdX2UKGgGR0BykbkJa7mMaAdNFgFoCEdAkYh0nG828HV9lChoBkdAbrtUx20Re2gHS/loCEdAkYiLhm5DqnV9lChoBkdAcYHGtITXa2gHS9poCEdAkYjYnKGL1nV9lChoBkdAcumY0l7dBWgHTVkBaAhHQJGJgGjbi6x1fZQoaAZHQHAxHKr7wa1oB0vyaAhHQJGOX04BFNN1fZQoaAZHQHBKRfrrxAloB00QAWgIR0CRjl5VfeDWdX2UKGgGR0By5JGc4HX3aAdNJAFoCEdAkY67bDdgv3V9lChoBkdAQrAIQe3hGmgHS75oCEdAkY7cvysjmnV9lChoBkdAcJXh7VrhzmgHTQ4BaAhHQJGQbn4fwJB1fZQoaAZHQHOnkMoc7yRoB00NAWgIR0CRkMDPnjhldX2UKGgGR0BxW6enQ6ZIaAdL+2gIR0CRkPaisXBQdX2UKGgGR0Bv7LLdN34caAdL92gIR0CRkRnNgSezdX2UKGgGR0BxfpDWsijdaAdNGAFoCEdAkZFPkmx+rnV9lChoBkdAb2pftQbdamgHS/doCEdAkZF4G2TgVHV9lChoBkdAcE2By0a6z2gHTSMBaAhHQJGRjtVrAQB1fZQoaAZHQHLmnGff4ypoB00NAWgIR0CRkvtsenyedX2UKGgGR0BybdAB1cMWaAdLz2gIR0CRlb+ocaOxdX2UKGgGR0BwZe/yoXKsaAdL3GgIR0CRlkJhOP/8dX2UKGgGR0BBI7iQ1aW5aAdLnmgIR0CRly6XjU/fdX2UKGgGR0BxLJQj2SMcaAdL72gIR0CRl4s/IKc/dX2UKGgGR0ByswC/47A+aAdL/mgIR0CRl/isGPgfdX2UKGgGR0Bxghsxfv4NaAdL12gIR0CRmDRaHKwIdX2UKGgGR0BNGCgCfYjCaAdLvGgIR0CRmD+MZP2xdX2UKGgGR0BveR6Y3Ns4aAdLz2gIR0CRmGd/rjYJdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a549ede0c69074f9990bb75b22ad4f3574b40b3b44af4a10357c8fcce9bee95
3
+ size 88362
ppo-LunarLander-v2-2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b075fd94dded1ca1f93f4ca3b485aea95a3e635d7a28dab47d19b1054f7fd87a
3
+ size 43762
ppo-LunarLander-v2-2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2-2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 249.10435809940842, "std_reward": 21.045392199947965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-01T16:19:30.385053"}