Louxads commited on
Commit
2667414
·
verified ·
1 Parent(s): 8918ba9

Upload 7 files

Browse files
README.md CHANGED
@@ -1,3 +1,67 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ pipeline_tag: fill-mask
4
+ tags:
5
+ - legal
6
+ license: mit
7
+ ---
8
+
9
+ ### InLegalBERT
10
+ Model and tokenizer files for the InLegalBERT model from the paper [Pre-training Transformers on Indian Legal Text](https://arxiv.org/abs/2209.06049).
11
+
12
+ ### Training Data
13
+ For building the pre-training corpus of Indian legal text, we collected a large corpus of case documents from the Indian Supreme Court and many High Courts of India.
14
+ The court cases in our dataset range from 1950 to 2019, and belong to all legal domains, such as Civil, Criminal, Constitutional, and so on.
15
+ In total, our dataset contains around 5.4 million Indian legal documents (all in the English language).
16
+ The raw text corpus size is around 27 GB.
17
+
18
+ ### Training Setup
19
+ This model is initialized with the [LEGAL-BERT-SC model](https://huggingface.co/nlpaueb/legal-bert-base-uncased) from the paper [LEGAL-BERT: The Muppets straight out of Law School](https://aclanthology.org/2020.findings-emnlp.261/). In our work, we refer to this model as LegalBERT, and our re-trained model as InLegalBERT.
20
+ We further train this model on our data for 300K steps on the Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) tasks.
21
+
22
+ ### Model Overview
23
+ This model uses the same tokenizer as [LegalBERT](https://huggingface.co/nlpaueb/legal-bert-base-uncased).
24
+ This model has the same configuration as the [bert-base-uncased model](https://huggingface.co/bert-base-uncased):
25
+ 12 hidden layers, 768 hidden dimensionality, 12 attention heads, ~110M parameters.
26
+
27
+ ### Usage
28
+ Using the model to get embeddings/representations for a piece of text
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModel
31
+ tokenizer = AutoTokenizer.from_pretrained("law-ai/InLegalBERT")
32
+ text = "Replace this string with yours"
33
+ encoded_input = tokenizer(text, return_tensors="pt")
34
+ model = AutoModel.from_pretrained("law-ai/InLegalBERT")
35
+ output = model(**encoded_input)
36
+ last_hidden_state = output.last_hidden_state
37
+ ```
38
+
39
+ ### Fine-tuning Results
40
+ We have fine-tuned all pre-trained models on 3 legal tasks with Indian datasets:
41
+ * Legal Statute Identification ([ILSI Dataset](https://arxiv.org/abs/2112.14731))[Multi-label Text Classification]: Identifying relevant statutes (law articles) based on the facts of a court case
42
+ * Semantic Segmentation ([ISS Dataset](https://arxiv.org/abs/1911.05405))[Sentence Tagging]: Segmenting the document into 7 functional parts (semantic segments) such as Facts, Arguments, etc.
43
+ * Court Judgment Prediction ([ILDC Dataset](https://arxiv.org/abs/2105.13562))[Binary Text Classification]: Predicting whether the claims/petitions of a court case will be accepted/rejected
44
+
45
+ InLegalBERT beats LegalBERT as well as all other baselines/variants we have used, across all three tasks. For details, see our [paper](https://arxiv.org/abs/2209.06049).
46
+
47
+ ### Citation
48
+ ```
49
+ @inproceedings{paul-2022-pretraining,
50
+ url = {https://arxiv.org/abs/2209.06049},
51
+ author = {Paul, Shounak and Mandal, Arpan and Goyal, Pawan and Ghosh, Saptarshi},
52
+ title = {Pre-trained Language Models for the Legal Domain: A Case Study on Indian Law},
53
+ booktitle = {Proceedings of 19th International Conference on Artificial Intelligence and Law - ICAIL 2023}
54
+ year = {2023},
55
+ }
56
+ ```
57
+
58
+ ### About Us
59
+ We are a group of researchers from the Department of Computer Science and Technology, Indian Insitute of Technology, Kharagpur.
60
+ Our research interests are primarily ML and NLP applications for the legal domain, with a special focus on the challenges and oppurtunites for the Indian legal scenario.
61
+ We have, and are currently working on several legal tasks such as:
62
+ * named entity recognition, summarization of legal documents
63
+ * semantic segmentation of legal documents
64
+ * legal statute identification from facts, court judgment prediction
65
+ * legal document matching
66
+
67
+ You can find our publicly available codes and datasets [here](https://github.com/Law-AI).
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "law-ai/InLegalBERT",
3
+ "architectures": [
4
+ "BertForPreTraining"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_ids": 0,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 0,
22
+ "position_embedding_type": "absolute",
23
+ "transformers_version": "4.17.0",
24
+ "type_vocab_size": 2,
25
+ "use_cache": true,
26
+ "vocab_size": 30522
27
+ }
gitattributes ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.npy filter=lfs diff=lfs merge=lfs -text
14
+ *.npz filter=lfs diff=lfs merge=lfs -text
15
+ *.onnx filter=lfs diff=lfs merge=lfs -text
16
+ *.ot filter=lfs diff=lfs merge=lfs -text
17
+ *.parquet filter=lfs diff=lfs merge=lfs -text
18
+ *.pb filter=lfs diff=lfs merge=lfs -text
19
+ *.pickle filter=lfs diff=lfs merge=lfs -text
20
+ *.pkl filter=lfs diff=lfs merge=lfs -text
21
+ *.pt filter=lfs diff=lfs merge=lfs -text
22
+ *.pth filter=lfs diff=lfs merge=lfs -text
23
+ *.rar filter=lfs diff=lfs merge=lfs -text
24
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
26
+ *.tflite filter=lfs diff=lfs merge=lfs -text
27
+ *.tgz filter=lfs diff=lfs merge=lfs -text
28
+ *.wasm filter=lfs diff=lfs merge=lfs -text
29
+ *.xz filter=lfs diff=lfs merge=lfs -text
30
+ *.zip filter=lfs diff=lfs merge=lfs -text
31
+ *.zst filter=lfs diff=lfs merge=lfs -text
32
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c5b13086a73147b272595d98434896cf736227881dd6e8f5d71927b0d63f4c5
3
+ size 534276705
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": "Cache/1ec992491addc8a43e9196bea3ccaf98f3958ce101f111ba9096813cf1ab493c.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d", "name_or_path": "nlpaueb/legal-bert-base-uncased", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff