Upload lm-boosted decoder
Browse files- README.md +166 -0
- alphabet.json +1 -0
- config.json +75 -0
- eval.py +164 -0
- flax_model.msgpack +3 -0
- full_eval.sh +15 -0
- language_model/5gram.bin +3 -0
- language_model/attrs.json +1 -0
- language_model/unigrams.txt +0 -0
- log_mozilla-foundation_common_voice_6_0_es_test_predictions.txt +0 -0
- log_mozilla-foundation_common_voice_6_0_es_test_predictions_greedy.txt +0 -0
- log_mozilla-foundation_common_voice_6_0_es_test_targets.txt +0 -0
- log_speech-recognition-community-v2_dev_data_es_validation_predictions.txt +0 -0
- log_speech-recognition-community-v2_dev_data_es_validation_predictions_greedy.txt +0 -0
- log_speech-recognition-community-v2_dev_data_es_validation_targets.txt +0 -0
- mozilla-foundation_common_voice_6_0_es_test_eval_results.txt +2 -0
- mozilla-foundation_common_voice_6_0_es_test_eval_results_greedy.txt +2 -0
- preprocessor_config.json +10 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- speech-recognition-community-v2_dev_data_es_validation_eval_results.txt +2 -0
- speech-recognition-community-v2_dev_data_es_validation_eval_results_greedy.txt +2 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: es
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- common_voice
|
6 |
+
- mozilla-foundation/common_voice_6_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
- cer
|
10 |
+
tags:
|
11 |
+
- es
|
12 |
+
- audio
|
13 |
+
- automatic-speech-recognition
|
14 |
+
- speech
|
15 |
+
- xlsr-fine-tuning-week
|
16 |
+
- robust-speech-event
|
17 |
+
- mozilla-foundation/common_voice_6_0
|
18 |
+
model-index:
|
19 |
+
- name: XLSR Wav2Vec2 Spanish by Jonatas Grosman
|
20 |
+
results:
|
21 |
+
- task:
|
22 |
+
name: Automatic Speech Recognition
|
23 |
+
type: automatic-speech-recognition
|
24 |
+
dataset:
|
25 |
+
name: Common Voice es
|
26 |
+
type: common_voice
|
27 |
+
args: es
|
28 |
+
metrics:
|
29 |
+
- name: Test WER
|
30 |
+
type: wer
|
31 |
+
value: 8.82
|
32 |
+
- name: Test CER
|
33 |
+
type: cer
|
34 |
+
value: 2.58
|
35 |
+
- name: Test WER (+LM)
|
36 |
+
type: wer
|
37 |
+
value: 6.27
|
38 |
+
- name: Test CER (+LM)
|
39 |
+
type: cer
|
40 |
+
value: 2.06
|
41 |
+
- task:
|
42 |
+
name: Automatic Speech Recognition
|
43 |
+
type: automatic-speech-recognition
|
44 |
+
dataset:
|
45 |
+
name: Robust Speech Event - Dev Data
|
46 |
+
type: speech-recognition-community-v2/dev_data
|
47 |
+
args: es
|
48 |
+
metrics:
|
49 |
+
- name: Dev WER
|
50 |
+
type: wer
|
51 |
+
value: 30.19
|
52 |
+
- name: Dev CER
|
53 |
+
type: cer
|
54 |
+
value: 13.56
|
55 |
+
- name: Dev WER (+LM)
|
56 |
+
type: wer
|
57 |
+
value: 24.71
|
58 |
+
- name: Dev CER (+LM)
|
59 |
+
type: cer
|
60 |
+
value: 12.61
|
61 |
+
---
|
62 |
+
|
63 |
+
# Wav2Vec2-Large-XLSR-53-Spanish
|
64 |
+
|
65 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Spanish using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
66 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
67 |
+
|
68 |
+
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
|
69 |
+
|
70 |
+
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
|
71 |
+
|
72 |
+
## Usage
|
73 |
+
|
74 |
+
The model can be used directly (without a language model) as follows...
|
75 |
+
|
76 |
+
Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library:
|
77 |
+
|
78 |
+
```python
|
79 |
+
from asrecognition import ASREngine
|
80 |
+
|
81 |
+
asr = ASREngine("es", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
|
82 |
+
|
83 |
+
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
|
84 |
+
transcriptions = asr.transcribe(audio_paths)
|
85 |
+
```
|
86 |
+
|
87 |
+
Writing your own inference script:
|
88 |
+
|
89 |
+
```python
|
90 |
+
import torch
|
91 |
+
import librosa
|
92 |
+
from datasets import load_dataset
|
93 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
94 |
+
|
95 |
+
LANG_ID = "es"
|
96 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish"
|
97 |
+
SAMPLES = 10
|
98 |
+
|
99 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
|
100 |
+
|
101 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
102 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
103 |
+
|
104 |
+
# Preprocessing the datasets.
|
105 |
+
# We need to read the audio files as arrays
|
106 |
+
def speech_file_to_array_fn(batch):
|
107 |
+
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
108 |
+
batch["speech"] = speech_array
|
109 |
+
batch["sentence"] = batch["sentence"].upper()
|
110 |
+
return batch
|
111 |
+
|
112 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
113 |
+
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
114 |
+
|
115 |
+
with torch.no_grad():
|
116 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
117 |
+
|
118 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
119 |
+
predicted_sentences = processor.batch_decode(predicted_ids)
|
120 |
+
|
121 |
+
for i, predicted_sentence in enumerate(predicted_sentences):
|
122 |
+
print("-" * 100)
|
123 |
+
print("Reference:", test_dataset[i]["sentence"])
|
124 |
+
print("Prediction:", predicted_sentence)
|
125 |
+
```
|
126 |
+
|
127 |
+
| Reference | Prediction |
|
128 |
+
| ------------- | ------------- |
|
129 |
+
| HABITA EN AGUAS POCO PROFUNDAS Y ROCOSAS. | HABITAN AGUAS POCO PROFUNDAS Y ROCOSAS |
|
130 |
+
| OPERA PRINCIPALMENTE VUELOS DE CABOTAJE Y REGIONALES DE CARGA. | OPERA PRINCIPALMENTE VUELO DE CARBOTAJES Y REGIONALES DE CARGAN |
|
131 |
+
| PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN. | PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN |
|
132 |
+
| TRES | TRES |
|
133 |
+
| REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA, PARA CONTINUAR LUEGO EN ESPAÑA. | REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA PARA CONTINUAR LUEGO EN ESPAÑA |
|
134 |
+
| EN LOS AÑOS QUE SIGUIERON, ESTE TRABAJO ESPARTA PRODUJO DOCENAS DE BUENOS JUGADORES. | EN LOS AÑOS QUE SIGUIERON ESTE TRABAJO ESPARTA PRODUJO DOCENA DE BUENOS JUGADORES |
|
135 |
+
| SE ESTÁ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS. | SE ESTÓ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS |
|
136 |
+
| SÍ | SÍ |
|
137 |
+
| "FUE ""SACADA"" DE LA SERIE EN EL EPISODIO ""LEAD"", EN QUE ALEXANDRA CABOT REGRESÓ." | FUE SACADA DE LA SERIE EN EL EPISODIO LEED EN QUE ALEXANDRA KAOT REGRESÓ |
|
138 |
+
| SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOKA, EN LA PROVINCIA DE BIOKO SUR. | SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOCA EN LA PROVINCIA DE PÍOCOSUR |
|
139 |
+
|
140 |
+
## Evaluation
|
141 |
+
|
142 |
+
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
|
143 |
+
|
144 |
+
```bash
|
145 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test
|
146 |
+
```
|
147 |
+
|
148 |
+
2. To evaluate on `speech-recognition-community-v2/dev_data`
|
149 |
+
|
150 |
+
```bash
|
151 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
152 |
+
```
|
153 |
+
|
154 |
+
## Citation
|
155 |
+
If you want to cite this model you can use this:
|
156 |
+
|
157 |
+
```bibtex
|
158 |
+
@misc{grosman2021wav2vec2-large-xlsr-53-spanish,
|
159 |
+
title={XLSR Wav2Vec2 Spanish by Jonatas Grosman},
|
160 |
+
author={Grosman, Jonatas},
|
161 |
+
publisher={Hugging Face},
|
162 |
+
journal={Hugging Face Hub},
|
163 |
+
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish}},
|
164 |
+
year={2021}
|
165 |
+
}
|
166 |
+
```
|
alphabet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"labels": ["", "<s>", "</s>", "\u2047", " ", "'", "-", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "\u00e1", "\u00e9", "\u00ed", "\u00f1", "\u00f3", "\u00f6", "\u00fa", "\u00fc"], "is_bpe": false}
|
config.json
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.05,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.05,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"hidden_act": "gelu",
|
48 |
+
"hidden_dropout": 0.05,
|
49 |
+
"hidden_size": 1024,
|
50 |
+
"initializer_range": 0.02,
|
51 |
+
"intermediate_size": 4096,
|
52 |
+
"layer_norm_eps": 1e-05,
|
53 |
+
"layerdrop": 0.05,
|
54 |
+
"mask_channel_length": 10,
|
55 |
+
"mask_channel_min_space": 1,
|
56 |
+
"mask_channel_other": 0.0,
|
57 |
+
"mask_channel_prob": 0.0,
|
58 |
+
"mask_channel_selection": "static",
|
59 |
+
"mask_feature_length": 10,
|
60 |
+
"mask_feature_prob": 0.0,
|
61 |
+
"mask_time_length": 10,
|
62 |
+
"mask_time_min_space": 1,
|
63 |
+
"mask_time_other": 0.0,
|
64 |
+
"mask_time_prob": 0.05,
|
65 |
+
"mask_time_selection": "static",
|
66 |
+
"model_type": "wav2vec2",
|
67 |
+
"num_attention_heads": 16,
|
68 |
+
"num_conv_pos_embedding_groups": 16,
|
69 |
+
"num_conv_pos_embeddings": 128,
|
70 |
+
"num_feat_extract_layers": 7,
|
71 |
+
"num_hidden_layers": 24,
|
72 |
+
"pad_token_id": 0,
|
73 |
+
"transformers_version": "4.7.0.dev0",
|
74 |
+
"vocab_size": 41
|
75 |
+
}
|
eval.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
3 |
+
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
4 |
+
import re
|
5 |
+
import torch
|
6 |
+
import argparse
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
10 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
11 |
+
|
12 |
+
log_outputs = args.log_outputs
|
13 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
14 |
+
|
15 |
+
# load metric
|
16 |
+
wer = load_metric("wer")
|
17 |
+
cer = load_metric("cer")
|
18 |
+
|
19 |
+
# compute metrics
|
20 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
21 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
22 |
+
|
23 |
+
# print & log results
|
24 |
+
result_str = (
|
25 |
+
f"WER: {wer_result}\n"
|
26 |
+
f"CER: {cer_result}"
|
27 |
+
)
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str:
|
51 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
52 |
+
|
53 |
+
text = text.lower() if to_lower else text.upper()
|
54 |
+
|
55 |
+
text = re.sub(invalid_chars_regex, " ", text)
|
56 |
+
|
57 |
+
text = re.sub("\s+", " ", text).strip()
|
58 |
+
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
def main(args):
|
63 |
+
# load dataset
|
64 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
65 |
+
|
66 |
+
# for testing: only process the first two examples as a test
|
67 |
+
# dataset = dataset.select(range(10))
|
68 |
+
|
69 |
+
# load processor
|
70 |
+
if args.greedy:
|
71 |
+
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
|
72 |
+
decoder = None
|
73 |
+
else:
|
74 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
75 |
+
decoder = processor.decoder
|
76 |
+
|
77 |
+
feature_extractor = processor.feature_extractor
|
78 |
+
tokenizer = processor.tokenizer
|
79 |
+
|
80 |
+
# resample audio
|
81 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
|
82 |
+
|
83 |
+
# load eval pipeline
|
84 |
+
if args.device is None:
|
85 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
86 |
+
|
87 |
+
config = AutoConfig.from_pretrained(args.model_id)
|
88 |
+
model = AutoModelForCTC.from_pretrained(args.model_id)
|
89 |
+
|
90 |
+
#asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
91 |
+
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer,
|
92 |
+
feature_extractor=feature_extractor, decoder=decoder, device=args.device)
|
93 |
+
|
94 |
+
# build normalizer config
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
96 |
+
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))]
|
97 |
+
special_tokens = [
|
98 |
+
tokenizer.pad_token, tokenizer.word_delimiter_token,
|
99 |
+
tokenizer.unk_token, tokenizer.bos_token,
|
100 |
+
tokenizer.eos_token,
|
101 |
+
]
|
102 |
+
non_special_tokens = [x for x in tokens if x not in special_tokens]
|
103 |
+
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]"
|
104 |
+
normalize_to_lower = False
|
105 |
+
for token in non_special_tokens:
|
106 |
+
if token.isalpha() and token.islower():
|
107 |
+
normalize_to_lower = True
|
108 |
+
break
|
109 |
+
|
110 |
+
# map function to decode audio
|
111 |
+
def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower):
|
112 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
113 |
+
|
114 |
+
batch["prediction"] = prediction["text"]
|
115 |
+
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower)
|
116 |
+
return batch
|
117 |
+
|
118 |
+
# run inference on all examples
|
119 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
120 |
+
|
121 |
+
# filtering out empty targets
|
122 |
+
result = result.filter(lambda example: example["target"] != "")
|
123 |
+
|
124 |
+
# compute and log_results
|
125 |
+
# do not change function below
|
126 |
+
log_results(result, args)
|
127 |
+
|
128 |
+
|
129 |
+
if __name__ == "__main__":
|
130 |
+
parser = argparse.ArgumentParser()
|
131 |
+
|
132 |
+
parser.add_argument(
|
133 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
134 |
+
)
|
135 |
+
parser.add_argument(
|
136 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
137 |
+
)
|
138 |
+
parser.add_argument(
|
139 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
140 |
+
)
|
141 |
+
parser.add_argument(
|
142 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--greedy", action='store_true', help="If defined, the LM will be ignored during inference."
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--device",
|
158 |
+
type=int,
|
159 |
+
default=None,
|
160 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
161 |
+
)
|
162 |
+
args = parser.parse_args()
|
163 |
+
|
164 |
+
main(args)
|
flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8562665a1543b6314efe98ec6cc291785ba2098b91495229765ea74ea85385ad
|
3 |
+
size 1261938372
|
full_eval.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CV - TEST
|
2 |
+
|
3 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test --log_outputs --greedy
|
4 |
+
mv log_mozilla-foundation_common_voice_6_0_es_test_predictions.txt log_mozilla-foundation_common_voice_6_0_es_test_predictions_greedy.txt
|
5 |
+
mv mozilla-foundation_common_voice_6_0_es_test_eval_results.txt mozilla-foundation_common_voice_6_0_es_test_eval_results_greedy.txt
|
6 |
+
|
7 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test --log_outputs
|
8 |
+
|
9 |
+
# HF EVENT - DEV
|
10 |
+
|
11 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs --greedy
|
12 |
+
mv log_speech-recognition-community-v2_dev_data_es_validation_predictions.txt log_speech-recognition-community-v2_dev_data_es_validation_predictions_greedy.txt
|
13 |
+
mv speech-recognition-community-v2_dev_data_es_validation_eval_results.txt speech-recognition-community-v2_dev_data_es_validation_eval_results_greedy.txt
|
14 |
+
|
15 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
|
language_model/5gram.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f67ae9965d754c88f5672eac4db06cb390343de94d602216b4e0ff2f692e49cd
|
3 |
+
size 2030299322
|
language_model/attrs.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
|
language_model/unigrams.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_6_0_es_test_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_6_0_es_test_predictions_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_mozilla-foundation_common_voice_6_0_es_test_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_es_validation_predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_es_validation_predictions_greedy.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
log_speech-recognition-community-v2_dev_data_es_validation_targets.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mozilla-foundation_common_voice_6_0_es_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.06274240927087324
|
2 |
+
CER: 0.020634801278087225
|
mozilla-foundation_common_voice_6_0_es_test_eval_results_greedy.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.0882252112363629
|
2 |
+
CER: 0.025844566726410997
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0.0,
|
7 |
+
"processor_class": "Wav2Vec2ProcessorWithLM",
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 16000
|
10 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41c110e55d2eac8c79486ad87dbe8f9527ed034fe087a6adf03c891eeba914c1
|
3 |
+
size 1262101911
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
speech-recognition-community-v2_dev_data_es_validation_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.24710373296639887
|
2 |
+
CER: 0.12611519286276568
|
speech-recognition-community-v2_dev_data_es_validation_eval_results_greedy.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.3019663544764526
|
2 |
+
CER: 0.1356763316714773
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": "/root/.cache/huggingface/transformers/52e49092dcb2734e90da586b9ff373ab7f3533fc113c3394bcf2cf110fa555f4.9d6cd81ef646692fb1c169a880161ea1cb95f49694f220aced9b704b457e51dd", "tokenizer_file": null, "name_or_path": "jonatasgrosman/wav2vec2-large-xlsr-53-spanish", "tokenizer_class": "Wav2Vec2CTCTokenizer", "processor_class": "Wav2Vec2ProcessorWithLM"}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "'": 5, "-": 6, "a": 7, "b": 8, "c": 9, "d": 10, "e": 11, "f": 12, "g": 13, "h": 14, "i": 15, "j": 16, "k": 17, "l": 18, "m": 19, "n": 20, "o": 21, "p": 22, "q": 23, "r": 24, "s": 25, "t": 26, "u": 27, "v": 28, "w": 29, "x": 30, "y": 31, "z": 32, "á": 33, "é": 34, "í": 35, "ñ": 36, "ó": 37, "ö": 38, "ú": 39, "ü": 40}
|