LukasStankevicius commited on
Commit
63cabad
·
1 Parent(s): b328056

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -16
README.md CHANGED
@@ -12,21 +12,9 @@ news articles using a transformer model**.
12
 
13
  ## Usage
14
  ```python
15
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
16
- name = "LukasStankevicius/t5-base-lithuanian-news-summaries-175"
17
- tokenizer = AutoTokenizer.from_pretrained(name)
18
- model = AutoModelForSeq2SeqLM.from_pretrained(name)
19
-
20
- def decode(x):
21
- return tokenizer.decode(x, skip_special_tokens=True)
22
-
23
- def summarize(text_, **g_kwargs):
24
- text_ = ' '.join(text_.strip().split())
25
- input_dict = tokenizer(text_, padding=True, return_tensors="pt",
26
- return_attention_mask=True)
27
- output = model.generate(**input_dict, **g_kwargs)
28
- predicted = list(map(decode, output.tolist()))[0]
29
- return predicted
30
  ```
31
  Given the following article body from [15min](#https://www.15min.lt/24sek/naujiena/lietuva/tarp-penkiu-rezultatyviausiu-tsrs-rinktines-visu-laiku-zaideju-trys-lietuviai-875-1380030):
32
  ```
@@ -41,9 +29,10 @@ Tarp žaidėjų, kurie sužaidė bent po 50 oficialių rungtynių Lietuvos rinkt
41
  ```
42
  The summary can be obtained by:
43
  ```
 
44
  g_kwargs = dict(max_length=512, num_beams=10, no_repeat_ngram_size=2,
45
  early_stopping=True)
46
- summarize(text, **g_kwargs)
47
  ```
48
  Output from above would be:
49
 
 
12
 
13
  ## Usage
14
  ```python
15
+ from transformers import pipeline
16
+ name= "LukasStankevicius/t5-base-lithuanian-news-summaries-175"
17
+ my_pipeline = pipeline(task="text2text-generation", model=name, framework="pt")
 
 
 
 
 
 
 
 
 
 
 
 
18
  ```
19
  Given the following article body from [15min](#https://www.15min.lt/24sek/naujiena/lietuva/tarp-penkiu-rezultatyviausiu-tsrs-rinktines-visu-laiku-zaideju-trys-lietuviai-875-1380030):
20
  ```
 
29
  ```
30
  The summary can be obtained by:
31
  ```
32
+ text = ' '.join(text.strip().split())
33
  g_kwargs = dict(max_length=512, num_beams=10, no_repeat_ngram_size=2,
34
  early_stopping=True)
35
+ my_pipeline(text, truncation=True, **g_kwargs)[0]["generated_text"]
36
  ```
37
  Output from above would be:
38