Safetensors
English
Finnish
bloom
File size: 3,292 Bytes
76bee80
 
 
 
 
 
 
 
 
 
 
 
882a4ee
76bee80
c304d85
76bee80
93c7c03
76bee80
c304d85
76bee80
b5493a6
76bee80
b5493a6
76bee80
93c7c03
76bee80
ef14d95
9562e8f
b5493a6
 
 
76bee80
c304d85
 
6094c85
9562e8f
c304d85
 
93c7c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c304d85
93c7c03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c304d85
 
 
78111ba
c304d85
78111ba
 
c304d85
 
 
 
 
76bee80
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: apache-2.0
language:
- en
- fi
base_model:
- LumiOpen/Poro-34B
datasets:
- sablo/oasst2_curated
- LumiOpen/instruction-collection-fin
---

This is an SFT-tuned model of [Poro-34B](https://huggingface.co/LumiOpen/Poro-34B) with English and Finnish data. We trained this model as part of our experiments on the impact of multilingual instruction-tuning on Poro-34B. For a better chat experience, we recommend using [Poro-34B-chat](https://huggingface.co/LumiOpen/Poro-34B-chat) instead.

## Datasets

### SFT

We use a curated subset of Open Assistant 2 and translated the dataset into Finnish using Poro-34B.

- **English**: [oasst2_curated](https://huggingface.co/datasets/sablo/oasst2_curated)

- **Finnish**: [instruction-collection-fin](https://huggingface.co/datasets/LumiOpen/instruction-collection-fin) (oasst2 subset)

### DPO

We use the HelpSteer2 preference binarized into chosen-rejected pairs using the helpfulness score as recommended in the [HelpSteer2](https://arxiv.org/abs/2406.08673) paper. We translated the dataset into Finnish using Poro.

- **English**: [HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2)

- **Finnish**: TBA

## Recipes

For finetuning, we used 4 nodes (8 x AMD MI250X) to obtain a global batch size of 128 for SFT and 64 for DPO. We used the [Alignment Handbook](https://github.com/huggingface/alignment-handbook/) codebase.

**SFT**

```
bf16: true
do_eval: true
evaluation_strategy: epoch
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: False
learning_rate: 2.0e-05
log_level: info
logging_steps: 50  
logging_strategy: steps
lr_scheduler_type: cosine
max_seq_length: 2048
max_steps: -1
num_train_epochs: 3
output_dir: data/poro-sft-oasst2
overwrite_output_dir: true
per_device_eval_batch_size: 4
per_device_train_batch_size: 2
remove_unused_columns: true
save_strategy: "epoch"
save_total_limit: 1
seed: 42
warmup_ratio: 0.1
```

**DPO**
```
bf16: true
beta: 0.05
do_eval: true
evaluation_strategy: epoch
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: False
learning_rate: 5.0e-7
log_level: info
logging_steps: 20
lr_scheduler_type: cosine
max_length: 1024
max_prompt_length: 512
num_train_epochs: 5
optim: adamw_torch
output_dir: data/poro-dpo-helpsteer2
per_device_train_batch_size: 2
per_device_eval_batch_size: 4
save_strategy: "epoch"
save_total_limit: 1
seed: 42
warmup_ratio: 0.1
```


## Evaluation

We use [IFEval](https://huggingface.co/datasets/google/IFEval) to evaluate the performance of the model in English. For Finnish, we translated the IFEval prompts to [Finnish](https://huggingface.co/datasets/LumiOpen/ifeval_mt) with DeepL. We report the instruction-level strict accuracy:

- **English**: 0.3997
- **Finnish**: 0.3448

## Citation

We discuss our experimental setup and results in our NoDaLiDa 2025 paper.

```
@inproceedings{
zosa2024got,
title={Got Compute, but No Data: Lessons From Post-training a Finnish {LLM}},
author={Elaine Zosa and Ville Komulainen and Sampo Pyysalo},
booktitle={The Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies},
year={2024},
url={https://openreview.net/forum?id=8wWlu1stNK}
}
```