MAY-A commited on
Commit
a85feb8
·
verified ·
1 Parent(s): 0892cd1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3048 -0
README.md ADDED
@@ -0,0 +1,3048 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jinaai/jina-embeddings-v2-base-de
3
+ language:
4
+ - de
5
+ - en
6
+ license: apache-2.0
7
+ tags:
8
+ - sentence-transformers
9
+ - feature-extraction
10
+ - sentence-similarity
11
+ - mteb
12
+ - transformers
13
+ - transformers.js
14
+ - llama-cpp
15
+ - gguf-my-repo
16
+ inference: false
17
+ model-index:
18
+ - name: jina-embeddings-v2-base-de
19
+ results:
20
+ - task:
21
+ type: Classification
22
+ dataset:
23
+ name: MTEB AmazonCounterfactualClassification (en)
24
+ type: mteb/amazon_counterfactual
25
+ config: en
26
+ split: test
27
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
28
+ metrics:
29
+ - type: accuracy
30
+ value: 73.76119402985076
31
+ - type: ap
32
+ value: 35.99577188521176
33
+ - type: f1
34
+ value: 67.50397431543269
35
+ - task:
36
+ type: Classification
37
+ dataset:
38
+ name: MTEB AmazonCounterfactualClassification (de)
39
+ type: mteb/amazon_counterfactual
40
+ config: de
41
+ split: test
42
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
43
+ metrics:
44
+ - type: accuracy
45
+ value: 68.9186295503212
46
+ - type: ap
47
+ value: 79.73307115840507
48
+ - type: f1
49
+ value: 66.66245744831339
50
+ - task:
51
+ type: Classification
52
+ dataset:
53
+ name: MTEB AmazonPolarityClassification
54
+ type: mteb/amazon_polarity
55
+ config: default
56
+ split: test
57
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
58
+ metrics:
59
+ - type: accuracy
60
+ value: 77.52215
61
+ - type: ap
62
+ value: 71.85051037177416
63
+ - type: f1
64
+ value: 77.4171096157774
65
+ - task:
66
+ type: Classification
67
+ dataset:
68
+ name: MTEB AmazonReviewsClassification (en)
69
+ type: mteb/amazon_reviews_multi
70
+ config: en
71
+ split: test
72
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
73
+ metrics:
74
+ - type: accuracy
75
+ value: 38.498
76
+ - type: f1
77
+ value: 38.058193386555956
78
+ - task:
79
+ type: Classification
80
+ dataset:
81
+ name: MTEB AmazonReviewsClassification (de)
82
+ type: mteb/amazon_reviews_multi
83
+ config: de
84
+ split: test
85
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
86
+ metrics:
87
+ - type: accuracy
88
+ value: 37.717999999999996
89
+ - type: f1
90
+ value: 37.22674371574757
91
+ - task:
92
+ type: Retrieval
93
+ dataset:
94
+ name: MTEB ArguAna
95
+ type: arguana
96
+ config: default
97
+ split: test
98
+ revision: None
99
+ metrics:
100
+ - type: map_at_1
101
+ value: 25.319999999999997
102
+ - type: map_at_10
103
+ value: 40.351
104
+ - type: map_at_100
105
+ value: 41.435
106
+ - type: map_at_1000
107
+ value: 41.443000000000005
108
+ - type: map_at_3
109
+ value: 35.266
110
+ - type: map_at_5
111
+ value: 37.99
112
+ - type: mrr_at_1
113
+ value: 25.746999999999996
114
+ - type: mrr_at_10
115
+ value: 40.515
116
+ - type: mrr_at_100
117
+ value: 41.606
118
+ - type: mrr_at_1000
119
+ value: 41.614000000000004
120
+ - type: mrr_at_3
121
+ value: 35.42
122
+ - type: mrr_at_5
123
+ value: 38.112
124
+ - type: ndcg_at_1
125
+ value: 25.319999999999997
126
+ - type: ndcg_at_10
127
+ value: 49.332
128
+ - type: ndcg_at_100
129
+ value: 53.909
130
+ - type: ndcg_at_1000
131
+ value: 54.089
132
+ - type: ndcg_at_3
133
+ value: 38.705
134
+ - type: ndcg_at_5
135
+ value: 43.606
136
+ - type: precision_at_1
137
+ value: 25.319999999999997
138
+ - type: precision_at_10
139
+ value: 7.831
140
+ - type: precision_at_100
141
+ value: 0.9820000000000001
142
+ - type: precision_at_1000
143
+ value: 0.1
144
+ - type: precision_at_3
145
+ value: 16.24
146
+ - type: precision_at_5
147
+ value: 12.119
148
+ - type: recall_at_1
149
+ value: 25.319999999999997
150
+ - type: recall_at_10
151
+ value: 78.307
152
+ - type: recall_at_100
153
+ value: 98.222
154
+ - type: recall_at_1000
155
+ value: 99.57300000000001
156
+ - type: recall_at_3
157
+ value: 48.72
158
+ - type: recall_at_5
159
+ value: 60.597
160
+ - task:
161
+ type: Clustering
162
+ dataset:
163
+ name: MTEB ArxivClusteringP2P
164
+ type: mteb/arxiv-clustering-p2p
165
+ config: default
166
+ split: test
167
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
168
+ metrics:
169
+ - type: v_measure
170
+ value: 41.43100588255654
171
+ - task:
172
+ type: Clustering
173
+ dataset:
174
+ name: MTEB ArxivClusteringS2S
175
+ type: mteb/arxiv-clustering-s2s
176
+ config: default
177
+ split: test
178
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
179
+ metrics:
180
+ - type: v_measure
181
+ value: 32.08988904593667
182
+ - task:
183
+ type: Reranking
184
+ dataset:
185
+ name: MTEB AskUbuntuDupQuestions
186
+ type: mteb/askubuntudupquestions-reranking
187
+ config: default
188
+ split: test
189
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
190
+ metrics:
191
+ - type: map
192
+ value: 60.55514765595906
193
+ - type: mrr
194
+ value: 73.51393835465858
195
+ - task:
196
+ type: STS
197
+ dataset:
198
+ name: MTEB BIOSSES
199
+ type: mteb/biosses-sts
200
+ config: default
201
+ split: test
202
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
203
+ metrics:
204
+ - type: cos_sim_pearson
205
+ value: 79.6723823121172
206
+ - type: cos_sim_spearman
207
+ value: 76.90596922214986
208
+ - type: euclidean_pearson
209
+ value: 77.87910737957918
210
+ - type: euclidean_spearman
211
+ value: 76.66319260598262
212
+ - type: manhattan_pearson
213
+ value: 77.37039493457965
214
+ - type: manhattan_spearman
215
+ value: 76.09872191280964
216
+ - task:
217
+ type: BitextMining
218
+ dataset:
219
+ name: MTEB BUCC (de-en)
220
+ type: mteb/bucc-bitext-mining
221
+ config: de-en
222
+ split: test
223
+ revision: d51519689f32196a32af33b075a01d0e7c51e252
224
+ metrics:
225
+ - type: accuracy
226
+ value: 98.97703549060543
227
+ - type: f1
228
+ value: 98.86569241475296
229
+ - type: precision
230
+ value: 98.81002087682673
231
+ - type: recall
232
+ value: 98.97703549060543
233
+ - task:
234
+ type: Classification
235
+ dataset:
236
+ name: MTEB Banking77Classification
237
+ type: mteb/banking77
238
+ config: default
239
+ split: test
240
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
241
+ metrics:
242
+ - type: accuracy
243
+ value: 83.93506493506493
244
+ - type: f1
245
+ value: 83.91014949949302
246
+ - task:
247
+ type: Clustering
248
+ dataset:
249
+ name: MTEB BiorxivClusteringP2P
250
+ type: mteb/biorxiv-clustering-p2p
251
+ config: default
252
+ split: test
253
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
254
+ metrics:
255
+ - type: v_measure
256
+ value: 34.970675877585144
257
+ - task:
258
+ type: Clustering
259
+ dataset:
260
+ name: MTEB BiorxivClusteringS2S
261
+ type: mteb/biorxiv-clustering-s2s
262
+ config: default
263
+ split: test
264
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
265
+ metrics:
266
+ - type: v_measure
267
+ value: 28.779230269190954
268
+ - task:
269
+ type: Clustering
270
+ dataset:
271
+ name: MTEB BlurbsClusteringP2P
272
+ type: slvnwhrl/blurbs-clustering-p2p
273
+ config: default
274
+ split: test
275
+ revision: a2dd5b02a77de3466a3eaa98ae586b5610314496
276
+ metrics:
277
+ - type: v_measure
278
+ value: 35.490175601567216
279
+ - task:
280
+ type: Clustering
281
+ dataset:
282
+ name: MTEB BlurbsClusteringS2S
283
+ type: slvnwhrl/blurbs-clustering-s2s
284
+ config: default
285
+ split: test
286
+ revision: 9bfff9a7f8f6dc6ffc9da71c48dd48b68696471d
287
+ metrics:
288
+ - type: v_measure
289
+ value: 16.16638280560168
290
+ - task:
291
+ type: Retrieval
292
+ dataset:
293
+ name: MTEB CQADupstackAndroidRetrieval
294
+ type: BeIR/cqadupstack
295
+ config: default
296
+ split: test
297
+ revision: None
298
+ metrics:
299
+ - type: map_at_1
300
+ value: 30.830999999999996
301
+ - type: map_at_10
302
+ value: 41.355
303
+ - type: map_at_100
304
+ value: 42.791000000000004
305
+ - type: map_at_1000
306
+ value: 42.918
307
+ - type: map_at_3
308
+ value: 38.237
309
+ - type: map_at_5
310
+ value: 40.066
311
+ - type: mrr_at_1
312
+ value: 38.484
313
+ - type: mrr_at_10
314
+ value: 47.593
315
+ - type: mrr_at_100
316
+ value: 48.388
317
+ - type: mrr_at_1000
318
+ value: 48.439
319
+ - type: mrr_at_3
320
+ value: 45.279
321
+ - type: mrr_at_5
322
+ value: 46.724
323
+ - type: ndcg_at_1
324
+ value: 38.484
325
+ - type: ndcg_at_10
326
+ value: 47.27
327
+ - type: ndcg_at_100
328
+ value: 52.568000000000005
329
+ - type: ndcg_at_1000
330
+ value: 54.729000000000006
331
+ - type: ndcg_at_3
332
+ value: 43.061
333
+ - type: ndcg_at_5
334
+ value: 45.083
335
+ - type: precision_at_1
336
+ value: 38.484
337
+ - type: precision_at_10
338
+ value: 8.927
339
+ - type: precision_at_100
340
+ value: 1.425
341
+ - type: precision_at_1000
342
+ value: 0.19
343
+ - type: precision_at_3
344
+ value: 20.791999999999998
345
+ - type: precision_at_5
346
+ value: 14.85
347
+ - type: recall_at_1
348
+ value: 30.830999999999996
349
+ - type: recall_at_10
350
+ value: 57.87799999999999
351
+ - type: recall_at_100
352
+ value: 80.124
353
+ - type: recall_at_1000
354
+ value: 94.208
355
+ - type: recall_at_3
356
+ value: 45.083
357
+ - type: recall_at_5
358
+ value: 51.154999999999994
359
+ - type: map_at_1
360
+ value: 25.782
361
+ - type: map_at_10
362
+ value: 34.492
363
+ - type: map_at_100
364
+ value: 35.521
365
+ - type: map_at_1000
366
+ value: 35.638
367
+ - type: map_at_3
368
+ value: 31.735999999999997
369
+ - type: map_at_5
370
+ value: 33.339
371
+ - type: mrr_at_1
372
+ value: 32.357
373
+ - type: mrr_at_10
374
+ value: 39.965
375
+ - type: mrr_at_100
376
+ value: 40.644000000000005
377
+ - type: mrr_at_1000
378
+ value: 40.695
379
+ - type: mrr_at_3
380
+ value: 37.739
381
+ - type: mrr_at_5
382
+ value: 39.061
383
+ - type: ndcg_at_1
384
+ value: 32.357
385
+ - type: ndcg_at_10
386
+ value: 39.644
387
+ - type: ndcg_at_100
388
+ value: 43.851
389
+ - type: ndcg_at_1000
390
+ value: 46.211999999999996
391
+ - type: ndcg_at_3
392
+ value: 35.675000000000004
393
+ - type: ndcg_at_5
394
+ value: 37.564
395
+ - type: precision_at_1
396
+ value: 32.357
397
+ - type: precision_at_10
398
+ value: 7.344
399
+ - type: precision_at_100
400
+ value: 1.201
401
+ - type: precision_at_1000
402
+ value: 0.168
403
+ - type: precision_at_3
404
+ value: 17.155
405
+ - type: precision_at_5
406
+ value: 12.166
407
+ - type: recall_at_1
408
+ value: 25.782
409
+ - type: recall_at_10
410
+ value: 49.132999999999996
411
+ - type: recall_at_100
412
+ value: 67.24
413
+ - type: recall_at_1000
414
+ value: 83.045
415
+ - type: recall_at_3
416
+ value: 37.021
417
+ - type: recall_at_5
418
+ value: 42.548
419
+ - type: map_at_1
420
+ value: 35.778999999999996
421
+ - type: map_at_10
422
+ value: 47.038000000000004
423
+ - type: map_at_100
424
+ value: 48.064
425
+ - type: map_at_1000
426
+ value: 48.128
427
+ - type: map_at_3
428
+ value: 44.186
429
+ - type: map_at_5
430
+ value: 45.788000000000004
431
+ - type: mrr_at_1
432
+ value: 41.254000000000005
433
+ - type: mrr_at_10
434
+ value: 50.556999999999995
435
+ - type: mrr_at_100
436
+ value: 51.296
437
+ - type: mrr_at_1000
438
+ value: 51.331
439
+ - type: mrr_at_3
440
+ value: 48.318
441
+ - type: mrr_at_5
442
+ value: 49.619
443
+ - type: ndcg_at_1
444
+ value: 41.254000000000005
445
+ - type: ndcg_at_10
446
+ value: 52.454
447
+ - type: ndcg_at_100
448
+ value: 56.776
449
+ - type: ndcg_at_1000
450
+ value: 58.181000000000004
451
+ - type: ndcg_at_3
452
+ value: 47.713
453
+ - type: ndcg_at_5
454
+ value: 49.997
455
+ - type: precision_at_1
456
+ value: 41.254000000000005
457
+ - type: precision_at_10
458
+ value: 8.464
459
+ - type: precision_at_100
460
+ value: 1.157
461
+ - type: precision_at_1000
462
+ value: 0.133
463
+ - type: precision_at_3
464
+ value: 21.526
465
+ - type: precision_at_5
466
+ value: 14.696000000000002
467
+ - type: recall_at_1
468
+ value: 35.778999999999996
469
+ - type: recall_at_10
470
+ value: 64.85300000000001
471
+ - type: recall_at_100
472
+ value: 83.98400000000001
473
+ - type: recall_at_1000
474
+ value: 94.18299999999999
475
+ - type: recall_at_3
476
+ value: 51.929
477
+ - type: recall_at_5
478
+ value: 57.666
479
+ - type: map_at_1
480
+ value: 21.719
481
+ - type: map_at_10
482
+ value: 29.326999999999998
483
+ - type: map_at_100
484
+ value: 30.314000000000004
485
+ - type: map_at_1000
486
+ value: 30.397000000000002
487
+ - type: map_at_3
488
+ value: 27.101
489
+ - type: map_at_5
490
+ value: 28.141
491
+ - type: mrr_at_1
492
+ value: 23.503
493
+ - type: mrr_at_10
494
+ value: 31.225
495
+ - type: mrr_at_100
496
+ value: 32.096000000000004
497
+ - type: mrr_at_1000
498
+ value: 32.159
499
+ - type: mrr_at_3
500
+ value: 29.076999999999998
501
+ - type: mrr_at_5
502
+ value: 30.083
503
+ - type: ndcg_at_1
504
+ value: 23.503
505
+ - type: ndcg_at_10
506
+ value: 33.842
507
+ - type: ndcg_at_100
508
+ value: 39.038000000000004
509
+ - type: ndcg_at_1000
510
+ value: 41.214
511
+ - type: ndcg_at_3
512
+ value: 29.347
513
+ - type: ndcg_at_5
514
+ value: 31.121
515
+ - type: precision_at_1
516
+ value: 23.503
517
+ - type: precision_at_10
518
+ value: 5.266
519
+ - type: precision_at_100
520
+ value: 0.831
521
+ - type: precision_at_1000
522
+ value: 0.106
523
+ - type: precision_at_3
524
+ value: 12.504999999999999
525
+ - type: precision_at_5
526
+ value: 8.565000000000001
527
+ - type: recall_at_1
528
+ value: 21.719
529
+ - type: recall_at_10
530
+ value: 46.024
531
+ - type: recall_at_100
532
+ value: 70.78999999999999
533
+ - type: recall_at_1000
534
+ value: 87.022
535
+ - type: recall_at_3
536
+ value: 33.64
537
+ - type: recall_at_5
538
+ value: 37.992
539
+ - type: map_at_1
540
+ value: 15.601
541
+ - type: map_at_10
542
+ value: 22.054000000000002
543
+ - type: map_at_100
544
+ value: 23.177
545
+ - type: map_at_1000
546
+ value: 23.308
547
+ - type: map_at_3
548
+ value: 19.772000000000002
549
+ - type: map_at_5
550
+ value: 21.055
551
+ - type: mrr_at_1
552
+ value: 19.403000000000002
553
+ - type: mrr_at_10
554
+ value: 26.409
555
+ - type: mrr_at_100
556
+ value: 27.356
557
+ - type: mrr_at_1000
558
+ value: 27.441
559
+ - type: mrr_at_3
560
+ value: 24.108999999999998
561
+ - type: mrr_at_5
562
+ value: 25.427
563
+ - type: ndcg_at_1
564
+ value: 19.403000000000002
565
+ - type: ndcg_at_10
566
+ value: 26.474999999999998
567
+ - type: ndcg_at_100
568
+ value: 32.086
569
+ - type: ndcg_at_1000
570
+ value: 35.231
571
+ - type: ndcg_at_3
572
+ value: 22.289
573
+ - type: ndcg_at_5
574
+ value: 24.271
575
+ - type: precision_at_1
576
+ value: 19.403000000000002
577
+ - type: precision_at_10
578
+ value: 4.813
579
+ - type: precision_at_100
580
+ value: 0.8869999999999999
581
+ - type: precision_at_1000
582
+ value: 0.13
583
+ - type: precision_at_3
584
+ value: 10.531
585
+ - type: precision_at_5
586
+ value: 7.710999999999999
587
+ - type: recall_at_1
588
+ value: 15.601
589
+ - type: recall_at_10
590
+ value: 35.916
591
+ - type: recall_at_100
592
+ value: 60.8
593
+ - type: recall_at_1000
594
+ value: 83.245
595
+ - type: recall_at_3
596
+ value: 24.321
597
+ - type: recall_at_5
598
+ value: 29.372999999999998
599
+ - type: map_at_1
600
+ value: 25.522
601
+ - type: map_at_10
602
+ value: 34.854
603
+ - type: map_at_100
604
+ value: 36.269
605
+ - type: map_at_1000
606
+ value: 36.387
607
+ - type: map_at_3
608
+ value: 32.187
609
+ - type: map_at_5
610
+ value: 33.692
611
+ - type: mrr_at_1
612
+ value: 31.375999999999998
613
+ - type: mrr_at_10
614
+ value: 40.471000000000004
615
+ - type: mrr_at_100
616
+ value: 41.481
617
+ - type: mrr_at_1000
618
+ value: 41.533
619
+ - type: mrr_at_3
620
+ value: 38.274
621
+ - type: mrr_at_5
622
+ value: 39.612
623
+ - type: ndcg_at_1
624
+ value: 31.375999999999998
625
+ - type: ndcg_at_10
626
+ value: 40.298
627
+ - type: ndcg_at_100
628
+ value: 46.255
629
+ - type: ndcg_at_1000
630
+ value: 48.522
631
+ - type: ndcg_at_3
632
+ value: 36.049
633
+ - type: ndcg_at_5
634
+ value: 38.095
635
+ - type: precision_at_1
636
+ value: 31.375999999999998
637
+ - type: precision_at_10
638
+ value: 7.305000000000001
639
+ - type: precision_at_100
640
+ value: 1.201
641
+ - type: precision_at_1000
642
+ value: 0.157
643
+ - type: precision_at_3
644
+ value: 17.132
645
+ - type: precision_at_5
646
+ value: 12.107999999999999
647
+ - type: recall_at_1
648
+ value: 25.522
649
+ - type: recall_at_10
650
+ value: 50.988
651
+ - type: recall_at_100
652
+ value: 76.005
653
+ - type: recall_at_1000
654
+ value: 91.11200000000001
655
+ - type: recall_at_3
656
+ value: 38.808
657
+ - type: recall_at_5
658
+ value: 44.279
659
+ - type: map_at_1
660
+ value: 24.615000000000002
661
+ - type: map_at_10
662
+ value: 32.843
663
+ - type: map_at_100
664
+ value: 34.172999999999995
665
+ - type: map_at_1000
666
+ value: 34.286
667
+ - type: map_at_3
668
+ value: 30.125
669
+ - type: map_at_5
670
+ value: 31.495
671
+ - type: mrr_at_1
672
+ value: 30.023
673
+ - type: mrr_at_10
674
+ value: 38.106
675
+ - type: mrr_at_100
676
+ value: 39.01
677
+ - type: mrr_at_1000
678
+ value: 39.071
679
+ - type: mrr_at_3
680
+ value: 35.674
681
+ - type: mrr_at_5
682
+ value: 36.924
683
+ - type: ndcg_at_1
684
+ value: 30.023
685
+ - type: ndcg_at_10
686
+ value: 38.091
687
+ - type: ndcg_at_100
688
+ value: 43.771
689
+ - type: ndcg_at_1000
690
+ value: 46.315
691
+ - type: ndcg_at_3
692
+ value: 33.507
693
+ - type: ndcg_at_5
694
+ value: 35.304
695
+ - type: precision_at_1
696
+ value: 30.023
697
+ - type: precision_at_10
698
+ value: 6.837999999999999
699
+ - type: precision_at_100
700
+ value: 1.124
701
+ - type: precision_at_1000
702
+ value: 0.152
703
+ - type: precision_at_3
704
+ value: 15.562999999999999
705
+ - type: precision_at_5
706
+ value: 10.936
707
+ - type: recall_at_1
708
+ value: 24.615000000000002
709
+ - type: recall_at_10
710
+ value: 48.691
711
+ - type: recall_at_100
712
+ value: 72.884
713
+ - type: recall_at_1000
714
+ value: 90.387
715
+ - type: recall_at_3
716
+ value: 35.659
717
+ - type: recall_at_5
718
+ value: 40.602
719
+ - type: map_at_1
720
+ value: 23.223666666666666
721
+ - type: map_at_10
722
+ value: 31.338166666666673
723
+ - type: map_at_100
724
+ value: 32.47358333333333
725
+ - type: map_at_1000
726
+ value: 32.5955
727
+ - type: map_at_3
728
+ value: 28.84133333333333
729
+ - type: map_at_5
730
+ value: 30.20808333333333
731
+ - type: mrr_at_1
732
+ value: 27.62483333333333
733
+ - type: mrr_at_10
734
+ value: 35.385916666666674
735
+ - type: mrr_at_100
736
+ value: 36.23325
737
+ - type: mrr_at_1000
738
+ value: 36.29966666666667
739
+ - type: mrr_at_3
740
+ value: 33.16583333333333
741
+ - type: mrr_at_5
742
+ value: 34.41983333333334
743
+ - type: ndcg_at_1
744
+ value: 27.62483333333333
745
+ - type: ndcg_at_10
746
+ value: 36.222
747
+ - type: ndcg_at_100
748
+ value: 41.29491666666666
749
+ - type: ndcg_at_1000
750
+ value: 43.85508333333333
751
+ - type: ndcg_at_3
752
+ value: 31.95116666666667
753
+ - type: ndcg_at_5
754
+ value: 33.88541666666667
755
+ - type: precision_at_1
756
+ value: 27.62483333333333
757
+ - type: precision_at_10
758
+ value: 6.339916666666667
759
+ - type: precision_at_100
760
+ value: 1.0483333333333333
761
+ - type: precision_at_1000
762
+ value: 0.14608333333333334
763
+ - type: precision_at_3
764
+ value: 14.726500000000003
765
+ - type: precision_at_5
766
+ value: 10.395
767
+ - type: recall_at_1
768
+ value: 23.223666666666666
769
+ - type: recall_at_10
770
+ value: 46.778999999999996
771
+ - type: recall_at_100
772
+ value: 69.27141666666667
773
+ - type: recall_at_1000
774
+ value: 87.27383333333334
775
+ - type: recall_at_3
776
+ value: 34.678749999999994
777
+ - type: recall_at_5
778
+ value: 39.79900000000001
779
+ - type: map_at_1
780
+ value: 21.677
781
+ - type: map_at_10
782
+ value: 27.828000000000003
783
+ - type: map_at_100
784
+ value: 28.538999999999998
785
+ - type: map_at_1000
786
+ value: 28.64
787
+ - type: map_at_3
788
+ value: 26.105
789
+ - type: map_at_5
790
+ value: 27.009
791
+ - type: mrr_at_1
792
+ value: 24.387
793
+ - type: mrr_at_10
794
+ value: 30.209999999999997
795
+ - type: mrr_at_100
796
+ value: 30.953000000000003
797
+ - type: mrr_at_1000
798
+ value: 31.029
799
+ - type: mrr_at_3
800
+ value: 28.707
801
+ - type: mrr_at_5
802
+ value: 29.610999999999997
803
+ - type: ndcg_at_1
804
+ value: 24.387
805
+ - type: ndcg_at_10
806
+ value: 31.378
807
+ - type: ndcg_at_100
808
+ value: 35.249
809
+ - type: ndcg_at_1000
810
+ value: 37.923
811
+ - type: ndcg_at_3
812
+ value: 28.213
813
+ - type: ndcg_at_5
814
+ value: 29.658
815
+ - type: precision_at_1
816
+ value: 24.387
817
+ - type: precision_at_10
818
+ value: 4.8309999999999995
819
+ - type: precision_at_100
820
+ value: 0.73
821
+ - type: precision_at_1000
822
+ value: 0.104
823
+ - type: precision_at_3
824
+ value: 12.168
825
+ - type: precision_at_5
826
+ value: 8.251999999999999
827
+ - type: recall_at_1
828
+ value: 21.677
829
+ - type: recall_at_10
830
+ value: 40.069
831
+ - type: recall_at_100
832
+ value: 58.077
833
+ - type: recall_at_1000
834
+ value: 77.97
835
+ - type: recall_at_3
836
+ value: 31.03
837
+ - type: recall_at_5
838
+ value: 34.838
839
+ - type: map_at_1
840
+ value: 14.484
841
+ - type: map_at_10
842
+ value: 20.355
843
+ - type: map_at_100
844
+ value: 21.382
845
+ - type: map_at_1000
846
+ value: 21.511
847
+ - type: map_at_3
848
+ value: 18.448
849
+ - type: map_at_5
850
+ value: 19.451999999999998
851
+ - type: mrr_at_1
852
+ value: 17.584
853
+ - type: mrr_at_10
854
+ value: 23.825
855
+ - type: mrr_at_100
856
+ value: 24.704
857
+ - type: mrr_at_1000
858
+ value: 24.793000000000003
859
+ - type: mrr_at_3
860
+ value: 21.92
861
+ - type: mrr_at_5
862
+ value: 22.97
863
+ - type: ndcg_at_1
864
+ value: 17.584
865
+ - type: ndcg_at_10
866
+ value: 24.315
867
+ - type: ndcg_at_100
868
+ value: 29.354999999999997
869
+ - type: ndcg_at_1000
870
+ value: 32.641999999999996
871
+ - type: ndcg_at_3
872
+ value: 20.802
873
+ - type: ndcg_at_5
874
+ value: 22.335
875
+ - type: precision_at_1
876
+ value: 17.584
877
+ - type: precision_at_10
878
+ value: 4.443
879
+ - type: precision_at_100
880
+ value: 0.8160000000000001
881
+ - type: precision_at_1000
882
+ value: 0.128
883
+ - type: precision_at_3
884
+ value: 9.807
885
+ - type: precision_at_5
886
+ value: 7.0889999999999995
887
+ - type: recall_at_1
888
+ value: 14.484
889
+ - type: recall_at_10
890
+ value: 32.804
891
+ - type: recall_at_100
892
+ value: 55.679
893
+ - type: recall_at_1000
894
+ value: 79.63
895
+ - type: recall_at_3
896
+ value: 22.976
897
+ - type: recall_at_5
898
+ value: 26.939
899
+ - type: map_at_1
900
+ value: 22.983999999999998
901
+ - type: map_at_10
902
+ value: 30.812
903
+ - type: map_at_100
904
+ value: 31.938
905
+ - type: map_at_1000
906
+ value: 32.056000000000004
907
+ - type: map_at_3
908
+ value: 28.449999999999996
909
+ - type: map_at_5
910
+ value: 29.542
911
+ - type: mrr_at_1
912
+ value: 27.145999999999997
913
+ - type: mrr_at_10
914
+ value: 34.782999999999994
915
+ - type: mrr_at_100
916
+ value: 35.699
917
+ - type: mrr_at_1000
918
+ value: 35.768
919
+ - type: mrr_at_3
920
+ value: 32.572
921
+ - type: mrr_at_5
922
+ value: 33.607
923
+ - type: ndcg_at_1
924
+ value: 27.145999999999997
925
+ - type: ndcg_at_10
926
+ value: 35.722
927
+ - type: ndcg_at_100
928
+ value: 40.964
929
+ - type: ndcg_at_1000
930
+ value: 43.598
931
+ - type: ndcg_at_3
932
+ value: 31.379
933
+ - type: ndcg_at_5
934
+ value: 32.924
935
+ - type: precision_at_1
936
+ value: 27.145999999999997
937
+ - type: precision_at_10
938
+ value: 6.063000000000001
939
+ - type: precision_at_100
940
+ value: 0.9730000000000001
941
+ - type: precision_at_1000
942
+ value: 0.13
943
+ - type: precision_at_3
944
+ value: 14.366000000000001
945
+ - type: precision_at_5
946
+ value: 9.776
947
+ - type: recall_at_1
948
+ value: 22.983999999999998
949
+ - type: recall_at_10
950
+ value: 46.876
951
+ - type: recall_at_100
952
+ value: 69.646
953
+ - type: recall_at_1000
954
+ value: 88.305
955
+ - type: recall_at_3
956
+ value: 34.471000000000004
957
+ - type: recall_at_5
958
+ value: 38.76
959
+ - type: map_at_1
960
+ value: 23.017000000000003
961
+ - type: map_at_10
962
+ value: 31.049
963
+ - type: map_at_100
964
+ value: 32.582
965
+ - type: map_at_1000
966
+ value: 32.817
967
+ - type: map_at_3
968
+ value: 28.303
969
+ - type: map_at_5
970
+ value: 29.854000000000003
971
+ - type: mrr_at_1
972
+ value: 27.866000000000003
973
+ - type: mrr_at_10
974
+ value: 35.56
975
+ - type: mrr_at_100
976
+ value: 36.453
977
+ - type: mrr_at_1000
978
+ value: 36.519
979
+ - type: mrr_at_3
980
+ value: 32.938
981
+ - type: mrr_at_5
982
+ value: 34.391
983
+ - type: ndcg_at_1
984
+ value: 27.866000000000003
985
+ - type: ndcg_at_10
986
+ value: 36.506
987
+ - type: ndcg_at_100
988
+ value: 42.344
989
+ - type: ndcg_at_1000
990
+ value: 45.213
991
+ - type: ndcg_at_3
992
+ value: 31.805
993
+ - type: ndcg_at_5
994
+ value: 33.933
995
+ - type: precision_at_1
996
+ value: 27.866000000000003
997
+ - type: precision_at_10
998
+ value: 7.016
999
+ - type: precision_at_100
1000
+ value: 1.468
1001
+ - type: precision_at_1000
1002
+ value: 0.23900000000000002
1003
+ - type: precision_at_3
1004
+ value: 14.822
1005
+ - type: precision_at_5
1006
+ value: 10.791
1007
+ - type: recall_at_1
1008
+ value: 23.017000000000003
1009
+ - type: recall_at_10
1010
+ value: 47.053
1011
+ - type: recall_at_100
1012
+ value: 73.177
1013
+ - type: recall_at_1000
1014
+ value: 91.47800000000001
1015
+ - type: recall_at_3
1016
+ value: 33.675
1017
+ - type: recall_at_5
1018
+ value: 39.36
1019
+ - type: map_at_1
1020
+ value: 16.673
1021
+ - type: map_at_10
1022
+ value: 24.051000000000002
1023
+ - type: map_at_100
1024
+ value: 24.933
1025
+ - type: map_at_1000
1026
+ value: 25.06
1027
+ - type: map_at_3
1028
+ value: 21.446
1029
+ - type: map_at_5
1030
+ value: 23.064
1031
+ - type: mrr_at_1
1032
+ value: 18.115000000000002
1033
+ - type: mrr_at_10
1034
+ value: 25.927
1035
+ - type: mrr_at_100
1036
+ value: 26.718999999999998
1037
+ - type: mrr_at_1000
1038
+ value: 26.817999999999998
1039
+ - type: mrr_at_3
1040
+ value: 23.383000000000003
1041
+ - type: mrr_at_5
1042
+ value: 25.008999999999997
1043
+ - type: ndcg_at_1
1044
+ value: 18.115000000000002
1045
+ - type: ndcg_at_10
1046
+ value: 28.669
1047
+ - type: ndcg_at_100
1048
+ value: 33.282000000000004
1049
+ - type: ndcg_at_1000
1050
+ value: 36.481
1051
+ - type: ndcg_at_3
1052
+ value: 23.574
1053
+ - type: ndcg_at_5
1054
+ value: 26.340000000000003
1055
+ - type: precision_at_1
1056
+ value: 18.115000000000002
1057
+ - type: precision_at_10
1058
+ value: 4.769
1059
+ - type: precision_at_100
1060
+ value: 0.767
1061
+ - type: precision_at_1000
1062
+ value: 0.116
1063
+ - type: precision_at_3
1064
+ value: 10.351
1065
+ - type: precision_at_5
1066
+ value: 7.8
1067
+ - type: recall_at_1
1068
+ value: 16.673
1069
+ - type: recall_at_10
1070
+ value: 41.063
1071
+ - type: recall_at_100
1072
+ value: 62.851
1073
+ - type: recall_at_1000
1074
+ value: 86.701
1075
+ - type: recall_at_3
1076
+ value: 27.532
1077
+ - type: recall_at_5
1078
+ value: 34.076
1079
+ - task:
1080
+ type: Retrieval
1081
+ dataset:
1082
+ name: MTEB ClimateFEVER
1083
+ type: climate-fever
1084
+ config: default
1085
+ split: test
1086
+ revision: None
1087
+ metrics:
1088
+ - type: map_at_1
1089
+ value: 8.752
1090
+ - type: map_at_10
1091
+ value: 15.120000000000001
1092
+ - type: map_at_100
1093
+ value: 16.678
1094
+ - type: map_at_1000
1095
+ value: 16.854
1096
+ - type: map_at_3
1097
+ value: 12.603
1098
+ - type: map_at_5
1099
+ value: 13.918
1100
+ - type: mrr_at_1
1101
+ value: 19.283
1102
+ - type: mrr_at_10
1103
+ value: 29.145
1104
+ - type: mrr_at_100
1105
+ value: 30.281000000000002
1106
+ - type: mrr_at_1000
1107
+ value: 30.339
1108
+ - type: mrr_at_3
1109
+ value: 26.069
1110
+ - type: mrr_at_5
1111
+ value: 27.864
1112
+ - type: ndcg_at_1
1113
+ value: 19.283
1114
+ - type: ndcg_at_10
1115
+ value: 21.804000000000002
1116
+ - type: ndcg_at_100
1117
+ value: 28.576
1118
+ - type: ndcg_at_1000
1119
+ value: 32.063
1120
+ - type: ndcg_at_3
1121
+ value: 17.511
1122
+ - type: ndcg_at_5
1123
+ value: 19.112000000000002
1124
+ - type: precision_at_1
1125
+ value: 19.283
1126
+ - type: precision_at_10
1127
+ value: 6.873
1128
+ - type: precision_at_100
1129
+ value: 1.405
1130
+ - type: precision_at_1000
1131
+ value: 0.20500000000000002
1132
+ - type: precision_at_3
1133
+ value: 13.16
1134
+ - type: precision_at_5
1135
+ value: 10.189
1136
+ - type: recall_at_1
1137
+ value: 8.752
1138
+ - type: recall_at_10
1139
+ value: 27.004
1140
+ - type: recall_at_100
1141
+ value: 50.648
1142
+ - type: recall_at_1000
1143
+ value: 70.458
1144
+ - type: recall_at_3
1145
+ value: 16.461000000000002
1146
+ - type: recall_at_5
1147
+ value: 20.973
1148
+ - task:
1149
+ type: Retrieval
1150
+ dataset:
1151
+ name: MTEB DBPedia
1152
+ type: dbpedia-entity
1153
+ config: default
1154
+ split: test
1155
+ revision: None
1156
+ metrics:
1157
+ - type: map_at_1
1158
+ value: 6.81
1159
+ - type: map_at_10
1160
+ value: 14.056
1161
+ - type: map_at_100
1162
+ value: 18.961
1163
+ - type: map_at_1000
1164
+ value: 20.169
1165
+ - type: map_at_3
1166
+ value: 10.496
1167
+ - type: map_at_5
1168
+ value: 11.952
1169
+ - type: mrr_at_1
1170
+ value: 53.5
1171
+ - type: mrr_at_10
1172
+ value: 63.479
1173
+ - type: mrr_at_100
1174
+ value: 63.971999999999994
1175
+ - type: mrr_at_1000
1176
+ value: 63.993
1177
+ - type: mrr_at_3
1178
+ value: 61.541999999999994
1179
+ - type: mrr_at_5
1180
+ value: 62.778999999999996
1181
+ - type: ndcg_at_1
1182
+ value: 42.25
1183
+ - type: ndcg_at_10
1184
+ value: 31.471
1185
+ - type: ndcg_at_100
1186
+ value: 35.115
1187
+ - type: ndcg_at_1000
1188
+ value: 42.408
1189
+ - type: ndcg_at_3
1190
+ value: 35.458
1191
+ - type: ndcg_at_5
1192
+ value: 32.973
1193
+ - type: precision_at_1
1194
+ value: 53.5
1195
+ - type: precision_at_10
1196
+ value: 24.85
1197
+ - type: precision_at_100
1198
+ value: 7.79
1199
+ - type: precision_at_1000
1200
+ value: 1.599
1201
+ - type: precision_at_3
1202
+ value: 38.667
1203
+ - type: precision_at_5
1204
+ value: 31.55
1205
+ - type: recall_at_1
1206
+ value: 6.81
1207
+ - type: recall_at_10
1208
+ value: 19.344
1209
+ - type: recall_at_100
1210
+ value: 40.837
1211
+ - type: recall_at_1000
1212
+ value: 64.661
1213
+ - type: recall_at_3
1214
+ value: 11.942
1215
+ - type: recall_at_5
1216
+ value: 14.646
1217
+ - task:
1218
+ type: Classification
1219
+ dataset:
1220
+ name: MTEB EmotionClassification
1221
+ type: mteb/emotion
1222
+ config: default
1223
+ split: test
1224
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1225
+ metrics:
1226
+ - type: accuracy
1227
+ value: 44.64499999999999
1228
+ - type: f1
1229
+ value: 39.39106911352714
1230
+ - task:
1231
+ type: Retrieval
1232
+ dataset:
1233
+ name: MTEB FEVER
1234
+ type: fever
1235
+ config: default
1236
+ split: test
1237
+ revision: None
1238
+ metrics:
1239
+ - type: map_at_1
1240
+ value: 48.196
1241
+ - type: map_at_10
1242
+ value: 61.404
1243
+ - type: map_at_100
1244
+ value: 61.846000000000004
1245
+ - type: map_at_1000
1246
+ value: 61.866
1247
+ - type: map_at_3
1248
+ value: 58.975
1249
+ - type: map_at_5
1250
+ value: 60.525
1251
+ - type: mrr_at_1
1252
+ value: 52.025
1253
+ - type: mrr_at_10
1254
+ value: 65.43299999999999
1255
+ - type: mrr_at_100
1256
+ value: 65.80799999999999
1257
+ - type: mrr_at_1000
1258
+ value: 65.818
1259
+ - type: mrr_at_3
1260
+ value: 63.146
1261
+ - type: mrr_at_5
1262
+ value: 64.64
1263
+ - type: ndcg_at_1
1264
+ value: 52.025
1265
+ - type: ndcg_at_10
1266
+ value: 67.889
1267
+ - type: ndcg_at_100
1268
+ value: 69.864
1269
+ - type: ndcg_at_1000
1270
+ value: 70.337
1271
+ - type: ndcg_at_3
1272
+ value: 63.315
1273
+ - type: ndcg_at_5
1274
+ value: 65.91799999999999
1275
+ - type: precision_at_1
1276
+ value: 52.025
1277
+ - type: precision_at_10
1278
+ value: 9.182
1279
+ - type: precision_at_100
1280
+ value: 1.027
1281
+ - type: precision_at_1000
1282
+ value: 0.108
1283
+ - type: precision_at_3
1284
+ value: 25.968000000000004
1285
+ - type: precision_at_5
1286
+ value: 17.006
1287
+ - type: recall_at_1
1288
+ value: 48.196
1289
+ - type: recall_at_10
1290
+ value: 83.885
1291
+ - type: recall_at_100
1292
+ value: 92.671
1293
+ - type: recall_at_1000
1294
+ value: 96.018
1295
+ - type: recall_at_3
1296
+ value: 71.59
1297
+ - type: recall_at_5
1298
+ value: 77.946
1299
+ - task:
1300
+ type: Retrieval
1301
+ dataset:
1302
+ name: MTEB FiQA2018
1303
+ type: fiqa
1304
+ config: default
1305
+ split: test
1306
+ revision: None
1307
+ metrics:
1308
+ - type: map_at_1
1309
+ value: 15.193000000000001
1310
+ - type: map_at_10
1311
+ value: 25.168000000000003
1312
+ - type: map_at_100
1313
+ value: 27.017000000000003
1314
+ - type: map_at_1000
1315
+ value: 27.205000000000002
1316
+ - type: map_at_3
1317
+ value: 21.746
1318
+ - type: map_at_5
1319
+ value: 23.579
1320
+ - type: mrr_at_1
1321
+ value: 31.635999999999996
1322
+ - type: mrr_at_10
1323
+ value: 40.077
1324
+ - type: mrr_at_100
1325
+ value: 41.112
1326
+ - type: mrr_at_1000
1327
+ value: 41.160999999999994
1328
+ - type: mrr_at_3
1329
+ value: 37.937
1330
+ - type: mrr_at_5
1331
+ value: 39.18
1332
+ - type: ndcg_at_1
1333
+ value: 31.635999999999996
1334
+ - type: ndcg_at_10
1335
+ value: 32.298
1336
+ - type: ndcg_at_100
1337
+ value: 39.546
1338
+ - type: ndcg_at_1000
1339
+ value: 42.88
1340
+ - type: ndcg_at_3
1341
+ value: 29.221999999999998
1342
+ - type: ndcg_at_5
1343
+ value: 30.069000000000003
1344
+ - type: precision_at_1
1345
+ value: 31.635999999999996
1346
+ - type: precision_at_10
1347
+ value: 9.367
1348
+ - type: precision_at_100
1349
+ value: 1.645
1350
+ - type: precision_at_1000
1351
+ value: 0.22399999999999998
1352
+ - type: precision_at_3
1353
+ value: 20.01
1354
+ - type: precision_at_5
1355
+ value: 14.753
1356
+ - type: recall_at_1
1357
+ value: 15.193000000000001
1358
+ - type: recall_at_10
1359
+ value: 38.214999999999996
1360
+ - type: recall_at_100
1361
+ value: 65.95
1362
+ - type: recall_at_1000
1363
+ value: 85.85300000000001
1364
+ - type: recall_at_3
1365
+ value: 26.357000000000003
1366
+ - type: recall_at_5
1367
+ value: 31.319999999999997
1368
+ - task:
1369
+ type: Retrieval
1370
+ dataset:
1371
+ name: MTEB GerDaLIR
1372
+ type: jinaai/ger_da_lir
1373
+ config: default
1374
+ split: test
1375
+ revision: None
1376
+ metrics:
1377
+ - type: map_at_1
1378
+ value: 10.363
1379
+ - type: map_at_10
1380
+ value: 16.222
1381
+ - type: map_at_100
1382
+ value: 17.28
1383
+ - type: map_at_1000
1384
+ value: 17.380000000000003
1385
+ - type: map_at_3
1386
+ value: 14.054
1387
+ - type: map_at_5
1388
+ value: 15.203
1389
+ - type: mrr_at_1
1390
+ value: 11.644
1391
+ - type: mrr_at_10
1392
+ value: 17.625
1393
+ - type: mrr_at_100
1394
+ value: 18.608
1395
+ - type: mrr_at_1000
1396
+ value: 18.695999999999998
1397
+ - type: mrr_at_3
1398
+ value: 15.481
1399
+ - type: mrr_at_5
1400
+ value: 16.659
1401
+ - type: ndcg_at_1
1402
+ value: 11.628
1403
+ - type: ndcg_at_10
1404
+ value: 20.028000000000002
1405
+ - type: ndcg_at_100
1406
+ value: 25.505
1407
+ - type: ndcg_at_1000
1408
+ value: 28.288000000000004
1409
+ - type: ndcg_at_3
1410
+ value: 15.603
1411
+ - type: ndcg_at_5
1412
+ value: 17.642
1413
+ - type: precision_at_1
1414
+ value: 11.628
1415
+ - type: precision_at_10
1416
+ value: 3.5589999999999997
1417
+ - type: precision_at_100
1418
+ value: 0.664
1419
+ - type: precision_at_1000
1420
+ value: 0.092
1421
+ - type: precision_at_3
1422
+ value: 7.109999999999999
1423
+ - type: precision_at_5
1424
+ value: 5.401
1425
+ - type: recall_at_1
1426
+ value: 10.363
1427
+ - type: recall_at_10
1428
+ value: 30.586000000000002
1429
+ - type: recall_at_100
1430
+ value: 56.43
1431
+ - type: recall_at_1000
1432
+ value: 78.142
1433
+ - type: recall_at_3
1434
+ value: 18.651
1435
+ - type: recall_at_5
1436
+ value: 23.493
1437
+ - task:
1438
+ type: Retrieval
1439
+ dataset:
1440
+ name: MTEB GermanDPR
1441
+ type: deepset/germandpr
1442
+ config: default
1443
+ split: test
1444
+ revision: 5129d02422a66be600ac89cd3e8531b4f97d347d
1445
+ metrics:
1446
+ - type: map_at_1
1447
+ value: 60.78
1448
+ - type: map_at_10
1449
+ value: 73.91499999999999
1450
+ - type: map_at_100
1451
+ value: 74.089
1452
+ - type: map_at_1000
1453
+ value: 74.09400000000001
1454
+ - type: map_at_3
1455
+ value: 71.87
1456
+ - type: map_at_5
1457
+ value: 73.37700000000001
1458
+ - type: mrr_at_1
1459
+ value: 60.78
1460
+ - type: mrr_at_10
1461
+ value: 73.91499999999999
1462
+ - type: mrr_at_100
1463
+ value: 74.089
1464
+ - type: mrr_at_1000
1465
+ value: 74.09400000000001
1466
+ - type: mrr_at_3
1467
+ value: 71.87
1468
+ - type: mrr_at_5
1469
+ value: 73.37700000000001
1470
+ - type: ndcg_at_1
1471
+ value: 60.78
1472
+ - type: ndcg_at_10
1473
+ value: 79.35600000000001
1474
+ - type: ndcg_at_100
1475
+ value: 80.077
1476
+ - type: ndcg_at_1000
1477
+ value: 80.203
1478
+ - type: ndcg_at_3
1479
+ value: 75.393
1480
+ - type: ndcg_at_5
1481
+ value: 78.077
1482
+ - type: precision_at_1
1483
+ value: 60.78
1484
+ - type: precision_at_10
1485
+ value: 9.59
1486
+ - type: precision_at_100
1487
+ value: 0.9900000000000001
1488
+ - type: precision_at_1000
1489
+ value: 0.1
1490
+ - type: precision_at_3
1491
+ value: 28.52
1492
+ - type: precision_at_5
1493
+ value: 18.4
1494
+ - type: recall_at_1
1495
+ value: 60.78
1496
+ - type: recall_at_10
1497
+ value: 95.902
1498
+ - type: recall_at_100
1499
+ value: 99.024
1500
+ - type: recall_at_1000
1501
+ value: 100.0
1502
+ - type: recall_at_3
1503
+ value: 85.56099999999999
1504
+ - type: recall_at_5
1505
+ value: 92.0
1506
+ - task:
1507
+ type: STS
1508
+ dataset:
1509
+ name: MTEB GermanSTSBenchmark
1510
+ type: jinaai/german-STSbenchmark
1511
+ config: default
1512
+ split: test
1513
+ revision: 49d9b423b996fea62b483f9ee6dfb5ec233515ca
1514
+ metrics:
1515
+ - type: cos_sim_pearson
1516
+ value: 88.49524420894356
1517
+ - type: cos_sim_spearman
1518
+ value: 88.32407839427714
1519
+ - type: euclidean_pearson
1520
+ value: 87.25098779877104
1521
+ - type: euclidean_spearman
1522
+ value: 88.22738098593608
1523
+ - type: manhattan_pearson
1524
+ value: 87.23872691839607
1525
+ - type: manhattan_spearman
1526
+ value: 88.2002968380165
1527
+ - task:
1528
+ type: Retrieval
1529
+ dataset:
1530
+ name: MTEB HotpotQA
1531
+ type: hotpotqa
1532
+ config: default
1533
+ split: test
1534
+ revision: None
1535
+ metrics:
1536
+ - type: map_at_1
1537
+ value: 31.81
1538
+ - type: map_at_10
1539
+ value: 46.238
1540
+ - type: map_at_100
1541
+ value: 47.141
1542
+ - type: map_at_1000
1543
+ value: 47.213
1544
+ - type: map_at_3
1545
+ value: 43.248999999999995
1546
+ - type: map_at_5
1547
+ value: 45.078
1548
+ - type: mrr_at_1
1549
+ value: 63.619
1550
+ - type: mrr_at_10
1551
+ value: 71.279
1552
+ - type: mrr_at_100
1553
+ value: 71.648
1554
+ - type: mrr_at_1000
1555
+ value: 71.665
1556
+ - type: mrr_at_3
1557
+ value: 69.76599999999999
1558
+ - type: mrr_at_5
1559
+ value: 70.743
1560
+ - type: ndcg_at_1
1561
+ value: 63.619
1562
+ - type: ndcg_at_10
1563
+ value: 55.38999999999999
1564
+ - type: ndcg_at_100
1565
+ value: 58.80800000000001
1566
+ - type: ndcg_at_1000
1567
+ value: 60.331999999999994
1568
+ - type: ndcg_at_3
1569
+ value: 50.727
1570
+ - type: ndcg_at_5
1571
+ value: 53.284
1572
+ - type: precision_at_1
1573
+ value: 63.619
1574
+ - type: precision_at_10
1575
+ value: 11.668000000000001
1576
+ - type: precision_at_100
1577
+ value: 1.434
1578
+ - type: precision_at_1000
1579
+ value: 0.164
1580
+ - type: precision_at_3
1581
+ value: 32.001000000000005
1582
+ - type: precision_at_5
1583
+ value: 21.223
1584
+ - type: recall_at_1
1585
+ value: 31.81
1586
+ - type: recall_at_10
1587
+ value: 58.339
1588
+ - type: recall_at_100
1589
+ value: 71.708
1590
+ - type: recall_at_1000
1591
+ value: 81.85
1592
+ - type: recall_at_3
1593
+ value: 48.001
1594
+ - type: recall_at_5
1595
+ value: 53.059
1596
+ - task:
1597
+ type: Classification
1598
+ dataset:
1599
+ name: MTEB ImdbClassification
1600
+ type: mteb/imdb
1601
+ config: default
1602
+ split: test
1603
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1604
+ metrics:
1605
+ - type: accuracy
1606
+ value: 68.60640000000001
1607
+ - type: ap
1608
+ value: 62.84296904042086
1609
+ - type: f1
1610
+ value: 68.50643633327537
1611
+ - task:
1612
+ type: Reranking
1613
+ dataset:
1614
+ name: MTEB MIRACL
1615
+ type: jinaai/miracl
1616
+ config: default
1617
+ split: test
1618
+ revision: 8741c3b61cd36ed9ca1b3d4203543a41793239e2
1619
+ metrics:
1620
+ - type: map
1621
+ value: 64.29704335389768
1622
+ - type: mrr
1623
+ value: 72.11962197159565
1624
+ - task:
1625
+ type: Classification
1626
+ dataset:
1627
+ name: MTEB MTOPDomainClassification (en)
1628
+ type: mteb/mtop_domain
1629
+ config: en
1630
+ split: test
1631
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1632
+ metrics:
1633
+ - type: accuracy
1634
+ value: 89.3844049247606
1635
+ - type: f1
1636
+ value: 89.2124328528015
1637
+ - task:
1638
+ type: Classification
1639
+ dataset:
1640
+ name: MTEB MTOPDomainClassification (de)
1641
+ type: mteb/mtop_domain
1642
+ config: de
1643
+ split: test
1644
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1645
+ metrics:
1646
+ - type: accuracy
1647
+ value: 88.36855452240067
1648
+ - type: f1
1649
+ value: 87.35458822097442
1650
+ - task:
1651
+ type: Classification
1652
+ dataset:
1653
+ name: MTEB MTOPIntentClassification (en)
1654
+ type: mteb/mtop_intent
1655
+ config: en
1656
+ split: test
1657
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1658
+ metrics:
1659
+ - type: accuracy
1660
+ value: 66.48654810761514
1661
+ - type: f1
1662
+ value: 50.07229882504409
1663
+ - task:
1664
+ type: Classification
1665
+ dataset:
1666
+ name: MTEB MTOPIntentClassification (de)
1667
+ type: mteb/mtop_intent
1668
+ config: de
1669
+ split: test
1670
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1671
+ metrics:
1672
+ - type: accuracy
1673
+ value: 63.832065370526905
1674
+ - type: f1
1675
+ value: 46.283579383385806
1676
+ - task:
1677
+ type: Classification
1678
+ dataset:
1679
+ name: MTEB MassiveIntentClassification (de)
1680
+ type: mteb/amazon_massive_intent
1681
+ config: de
1682
+ split: test
1683
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1684
+ metrics:
1685
+ - type: accuracy
1686
+ value: 63.89038332212509
1687
+ - type: f1
1688
+ value: 61.86279849685129
1689
+ - task:
1690
+ type: Classification
1691
+ dataset:
1692
+ name: MTEB MassiveIntentClassification (en)
1693
+ type: mteb/amazon_massive_intent
1694
+ config: en
1695
+ split: test
1696
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1697
+ metrics:
1698
+ - type: accuracy
1699
+ value: 69.11230665770006
1700
+ - type: f1
1701
+ value: 67.44780095350535
1702
+ - task:
1703
+ type: Classification
1704
+ dataset:
1705
+ name: MTEB MassiveScenarioClassification (de)
1706
+ type: mteb/amazon_massive_scenario
1707
+ config: de
1708
+ split: test
1709
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1710
+ metrics:
1711
+ - type: accuracy
1712
+ value: 71.25084061869536
1713
+ - type: f1
1714
+ value: 71.43965023016408
1715
+ - task:
1716
+ type: Classification
1717
+ dataset:
1718
+ name: MTEB MassiveScenarioClassification (en)
1719
+ type: mteb/amazon_massive_scenario
1720
+ config: en
1721
+ split: test
1722
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1723
+ metrics:
1724
+ - type: accuracy
1725
+ value: 73.73907195696032
1726
+ - type: f1
1727
+ value: 73.69920814839061
1728
+ - task:
1729
+ type: Clustering
1730
+ dataset:
1731
+ name: MTEB MedrxivClusteringP2P
1732
+ type: mteb/medrxiv-clustering-p2p
1733
+ config: default
1734
+ split: test
1735
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1736
+ metrics:
1737
+ - type: v_measure
1738
+ value: 31.32577306498249
1739
+ - task:
1740
+ type: Clustering
1741
+ dataset:
1742
+ name: MTEB MedrxivClusteringS2S
1743
+ type: mteb/medrxiv-clustering-s2s
1744
+ config: default
1745
+ split: test
1746
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1747
+ metrics:
1748
+ - type: v_measure
1749
+ value: 28.759349326367783
1750
+ - task:
1751
+ type: Reranking
1752
+ dataset:
1753
+ name: MTEB MindSmallReranking
1754
+ type: mteb/mind_small
1755
+ config: default
1756
+ split: test
1757
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1758
+ metrics:
1759
+ - type: map
1760
+ value: 30.401342674703425
1761
+ - type: mrr
1762
+ value: 31.384379585660987
1763
+ - task:
1764
+ type: Retrieval
1765
+ dataset:
1766
+ name: MTEB NFCorpus
1767
+ type: nfcorpus
1768
+ config: default
1769
+ split: test
1770
+ revision: None
1771
+ metrics:
1772
+ - type: map_at_1
1773
+ value: 4.855
1774
+ - type: map_at_10
1775
+ value: 10.01
1776
+ - type: map_at_100
1777
+ value: 12.461
1778
+ - type: map_at_1000
1779
+ value: 13.776
1780
+ - type: map_at_3
1781
+ value: 7.252
1782
+ - type: map_at_5
1783
+ value: 8.679
1784
+ - type: mrr_at_1
1785
+ value: 41.176
1786
+ - type: mrr_at_10
1787
+ value: 49.323
1788
+ - type: mrr_at_100
1789
+ value: 49.954
1790
+ - type: mrr_at_1000
1791
+ value: 49.997
1792
+ - type: mrr_at_3
1793
+ value: 46.904
1794
+ - type: mrr_at_5
1795
+ value: 48.375
1796
+ - type: ndcg_at_1
1797
+ value: 39.318999999999996
1798
+ - type: ndcg_at_10
1799
+ value: 28.607
1800
+ - type: ndcg_at_100
1801
+ value: 26.554
1802
+ - type: ndcg_at_1000
1803
+ value: 35.731
1804
+ - type: ndcg_at_3
1805
+ value: 32.897999999999996
1806
+ - type: ndcg_at_5
1807
+ value: 31.53
1808
+ - type: precision_at_1
1809
+ value: 41.176
1810
+ - type: precision_at_10
1811
+ value: 20.867
1812
+ - type: precision_at_100
1813
+ value: 6.796
1814
+ - type: precision_at_1000
1815
+ value: 1.983
1816
+ - type: precision_at_3
1817
+ value: 30.547
1818
+ - type: precision_at_5
1819
+ value: 27.245
1820
+ - type: recall_at_1
1821
+ value: 4.855
1822
+ - type: recall_at_10
1823
+ value: 14.08
1824
+ - type: recall_at_100
1825
+ value: 28.188000000000002
1826
+ - type: recall_at_1000
1827
+ value: 60.07900000000001
1828
+ - type: recall_at_3
1829
+ value: 7.947
1830
+ - type: recall_at_5
1831
+ value: 10.786
1832
+ - task:
1833
+ type: Retrieval
1834
+ dataset:
1835
+ name: MTEB NQ
1836
+ type: nq
1837
+ config: default
1838
+ split: test
1839
+ revision: None
1840
+ metrics:
1841
+ - type: map_at_1
1842
+ value: 26.906999999999996
1843
+ - type: map_at_10
1844
+ value: 41.147
1845
+ - type: map_at_100
1846
+ value: 42.269
1847
+ - type: map_at_1000
1848
+ value: 42.308
1849
+ - type: map_at_3
1850
+ value: 36.638999999999996
1851
+ - type: map_at_5
1852
+ value: 39.285
1853
+ - type: mrr_at_1
1854
+ value: 30.359
1855
+ - type: mrr_at_10
1856
+ value: 43.607
1857
+ - type: mrr_at_100
1858
+ value: 44.454
1859
+ - type: mrr_at_1000
1860
+ value: 44.481
1861
+ - type: mrr_at_3
1862
+ value: 39.644
1863
+ - type: mrr_at_5
1864
+ value: 42.061
1865
+ - type: ndcg_at_1
1866
+ value: 30.330000000000002
1867
+ - type: ndcg_at_10
1868
+ value: 48.899
1869
+ - type: ndcg_at_100
1870
+ value: 53.612
1871
+ - type: ndcg_at_1000
1872
+ value: 54.51200000000001
1873
+ - type: ndcg_at_3
1874
+ value: 40.262
1875
+ - type: ndcg_at_5
1876
+ value: 44.787
1877
+ - type: precision_at_1
1878
+ value: 30.330000000000002
1879
+ - type: precision_at_10
1880
+ value: 8.323
1881
+ - type: precision_at_100
1882
+ value: 1.0959999999999999
1883
+ - type: precision_at_1000
1884
+ value: 0.11800000000000001
1885
+ - type: precision_at_3
1886
+ value: 18.395
1887
+ - type: precision_at_5
1888
+ value: 13.627
1889
+ - type: recall_at_1
1890
+ value: 26.906999999999996
1891
+ - type: recall_at_10
1892
+ value: 70.215
1893
+ - type: recall_at_100
1894
+ value: 90.61200000000001
1895
+ - type: recall_at_1000
1896
+ value: 97.294
1897
+ - type: recall_at_3
1898
+ value: 47.784
1899
+ - type: recall_at_5
1900
+ value: 58.251
1901
+ - task:
1902
+ type: PairClassification
1903
+ dataset:
1904
+ name: MTEB PawsX
1905
+ type: paws-x
1906
+ config: default
1907
+ split: test
1908
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
1909
+ metrics:
1910
+ - type: cos_sim_accuracy
1911
+ value: 60.5
1912
+ - type: cos_sim_ap
1913
+ value: 57.606096528877494
1914
+ - type: cos_sim_f1
1915
+ value: 62.24240307369892
1916
+ - type: cos_sim_precision
1917
+ value: 45.27439024390244
1918
+ - type: cos_sim_recall
1919
+ value: 99.55307262569832
1920
+ - type: dot_accuracy
1921
+ value: 57.699999999999996
1922
+ - type: dot_ap
1923
+ value: 51.289351057160616
1924
+ - type: dot_f1
1925
+ value: 62.25953130465197
1926
+ - type: dot_precision
1927
+ value: 45.31568228105906
1928
+ - type: dot_recall
1929
+ value: 99.4413407821229
1930
+ - type: euclidean_accuracy
1931
+ value: 60.45
1932
+ - type: euclidean_ap
1933
+ value: 57.616461421424034
1934
+ - type: euclidean_f1
1935
+ value: 62.313697657913416
1936
+ - type: euclidean_precision
1937
+ value: 45.657826313052524
1938
+ - type: euclidean_recall
1939
+ value: 98.10055865921787
1940
+ - type: manhattan_accuracy
1941
+ value: 60.3
1942
+ - type: manhattan_ap
1943
+ value: 57.580565271667325
1944
+ - type: manhattan_f1
1945
+ value: 62.24240307369892
1946
+ - type: manhattan_precision
1947
+ value: 45.27439024390244
1948
+ - type: manhattan_recall
1949
+ value: 99.55307262569832
1950
+ - type: max_accuracy
1951
+ value: 60.5
1952
+ - type: max_ap
1953
+ value: 57.616461421424034
1954
+ - type: max_f1
1955
+ value: 62.313697657913416
1956
+ - task:
1957
+ type: Retrieval
1958
+ dataset:
1959
+ name: MTEB QuoraRetrieval
1960
+ type: quora
1961
+ config: default
1962
+ split: test
1963
+ revision: None
1964
+ metrics:
1965
+ - type: map_at_1
1966
+ value: 70.21300000000001
1967
+ - type: map_at_10
1968
+ value: 84.136
1969
+ - type: map_at_100
1970
+ value: 84.796
1971
+ - type: map_at_1000
1972
+ value: 84.812
1973
+ - type: map_at_3
1974
+ value: 81.182
1975
+ - type: map_at_5
1976
+ value: 83.027
1977
+ - type: mrr_at_1
1978
+ value: 80.91000000000001
1979
+ - type: mrr_at_10
1980
+ value: 87.155
1981
+ - type: mrr_at_100
1982
+ value: 87.27000000000001
1983
+ - type: mrr_at_1000
1984
+ value: 87.271
1985
+ - type: mrr_at_3
1986
+ value: 86.158
1987
+ - type: mrr_at_5
1988
+ value: 86.828
1989
+ - type: ndcg_at_1
1990
+ value: 80.88
1991
+ - type: ndcg_at_10
1992
+ value: 87.926
1993
+ - type: ndcg_at_100
1994
+ value: 89.223
1995
+ - type: ndcg_at_1000
1996
+ value: 89.321
1997
+ - type: ndcg_at_3
1998
+ value: 85.036
1999
+ - type: ndcg_at_5
2000
+ value: 86.614
2001
+ - type: precision_at_1
2002
+ value: 80.88
2003
+ - type: precision_at_10
2004
+ value: 13.350000000000001
2005
+ - type: precision_at_100
2006
+ value: 1.5310000000000001
2007
+ - type: precision_at_1000
2008
+ value: 0.157
2009
+ - type: precision_at_3
2010
+ value: 37.173
2011
+ - type: precision_at_5
2012
+ value: 24.476
2013
+ - type: recall_at_1
2014
+ value: 70.21300000000001
2015
+ - type: recall_at_10
2016
+ value: 95.12
2017
+ - type: recall_at_100
2018
+ value: 99.535
2019
+ - type: recall_at_1000
2020
+ value: 99.977
2021
+ - type: recall_at_3
2022
+ value: 86.833
2023
+ - type: recall_at_5
2024
+ value: 91.26100000000001
2025
+ - task:
2026
+ type: Clustering
2027
+ dataset:
2028
+ name: MTEB RedditClustering
2029
+ type: mteb/reddit-clustering
2030
+ config: default
2031
+ split: test
2032
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2033
+ metrics:
2034
+ - type: v_measure
2035
+ value: 47.754688783184875
2036
+ - task:
2037
+ type: Clustering
2038
+ dataset:
2039
+ name: MTEB RedditClusteringP2P
2040
+ type: mteb/reddit-clustering-p2p
2041
+ config: default
2042
+ split: test
2043
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
2044
+ metrics:
2045
+ - type: v_measure
2046
+ value: 54.875736374329364
2047
+ - task:
2048
+ type: Retrieval
2049
+ dataset:
2050
+ name: MTEB SCIDOCS
2051
+ type: scidocs
2052
+ config: default
2053
+ split: test
2054
+ revision: None
2055
+ metrics:
2056
+ - type: map_at_1
2057
+ value: 3.773
2058
+ - type: map_at_10
2059
+ value: 9.447
2060
+ - type: map_at_100
2061
+ value: 11.1
2062
+ - type: map_at_1000
2063
+ value: 11.37
2064
+ - type: map_at_3
2065
+ value: 6.787
2066
+ - type: map_at_5
2067
+ value: 8.077
2068
+ - type: mrr_at_1
2069
+ value: 18.5
2070
+ - type: mrr_at_10
2071
+ value: 28.227000000000004
2072
+ - type: mrr_at_100
2073
+ value: 29.445
2074
+ - type: mrr_at_1000
2075
+ value: 29.515
2076
+ - type: mrr_at_3
2077
+ value: 25.2
2078
+ - type: mrr_at_5
2079
+ value: 27.055
2080
+ - type: ndcg_at_1
2081
+ value: 18.5
2082
+ - type: ndcg_at_10
2083
+ value: 16.29
2084
+ - type: ndcg_at_100
2085
+ value: 23.250999999999998
2086
+ - type: ndcg_at_1000
2087
+ value: 28.445999999999998
2088
+ - type: ndcg_at_3
2089
+ value: 15.376000000000001
2090
+ - type: ndcg_at_5
2091
+ value: 13.528
2092
+ - type: precision_at_1
2093
+ value: 18.5
2094
+ - type: precision_at_10
2095
+ value: 8.51
2096
+ - type: precision_at_100
2097
+ value: 1.855
2098
+ - type: precision_at_1000
2099
+ value: 0.311
2100
+ - type: precision_at_3
2101
+ value: 14.533
2102
+ - type: precision_at_5
2103
+ value: 12.0
2104
+ - type: recall_at_1
2105
+ value: 3.773
2106
+ - type: recall_at_10
2107
+ value: 17.282
2108
+ - type: recall_at_100
2109
+ value: 37.645
2110
+ - type: recall_at_1000
2111
+ value: 63.138000000000005
2112
+ - type: recall_at_3
2113
+ value: 8.853
2114
+ - type: recall_at_5
2115
+ value: 12.168
2116
+ - task:
2117
+ type: STS
2118
+ dataset:
2119
+ name: MTEB SICK-R
2120
+ type: mteb/sickr-sts
2121
+ config: default
2122
+ split: test
2123
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
2124
+ metrics:
2125
+ - type: cos_sim_pearson
2126
+ value: 85.32789517976525
2127
+ - type: cos_sim_spearman
2128
+ value: 80.32750384145629
2129
+ - type: euclidean_pearson
2130
+ value: 81.5025131452508
2131
+ - type: euclidean_spearman
2132
+ value: 80.24797115147175
2133
+ - type: manhattan_pearson
2134
+ value: 81.51634463412002
2135
+ - type: manhattan_spearman
2136
+ value: 80.24614721495055
2137
+ - task:
2138
+ type: STS
2139
+ dataset:
2140
+ name: MTEB STS12
2141
+ type: mteb/sts12-sts
2142
+ config: default
2143
+ split: test
2144
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2145
+ metrics:
2146
+ - type: cos_sim_pearson
2147
+ value: 88.47050448992432
2148
+ - type: cos_sim_spearman
2149
+ value: 80.58919997743621
2150
+ - type: euclidean_pearson
2151
+ value: 85.83258918113664
2152
+ - type: euclidean_spearman
2153
+ value: 80.97441389240902
2154
+ - type: manhattan_pearson
2155
+ value: 85.7798262013878
2156
+ - type: manhattan_spearman
2157
+ value: 80.97208703064196
2158
+ - task:
2159
+ type: STS
2160
+ dataset:
2161
+ name: MTEB STS13
2162
+ type: mteb/sts13-sts
2163
+ config: default
2164
+ split: test
2165
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2166
+ metrics:
2167
+ - type: cos_sim_pearson
2168
+ value: 85.95341439711532
2169
+ - type: cos_sim_spearman
2170
+ value: 86.59127484634989
2171
+ - type: euclidean_pearson
2172
+ value: 85.57850603454227
2173
+ - type: euclidean_spearman
2174
+ value: 86.47130477363419
2175
+ - type: manhattan_pearson
2176
+ value: 85.59387925447652
2177
+ - type: manhattan_spearman
2178
+ value: 86.50665427391583
2179
+ - task:
2180
+ type: STS
2181
+ dataset:
2182
+ name: MTEB STS14
2183
+ type: mteb/sts14-sts
2184
+ config: default
2185
+ split: test
2186
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2187
+ metrics:
2188
+ - type: cos_sim_pearson
2189
+ value: 85.39810909161844
2190
+ - type: cos_sim_spearman
2191
+ value: 82.98595295546008
2192
+ - type: euclidean_pearson
2193
+ value: 84.04681129969951
2194
+ - type: euclidean_spearman
2195
+ value: 82.98197460689866
2196
+ - type: manhattan_pearson
2197
+ value: 83.9918798171185
2198
+ - type: manhattan_spearman
2199
+ value: 82.91148131768082
2200
+ - task:
2201
+ type: STS
2202
+ dataset:
2203
+ name: MTEB STS15
2204
+ type: mteb/sts15-sts
2205
+ config: default
2206
+ split: test
2207
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2208
+ metrics:
2209
+ - type: cos_sim_pearson
2210
+ value: 88.02072712147692
2211
+ - type: cos_sim_spearman
2212
+ value: 88.78821332623012
2213
+ - type: euclidean_pearson
2214
+ value: 88.12132045572747
2215
+ - type: euclidean_spearman
2216
+ value: 88.74273451067364
2217
+ - type: manhattan_pearson
2218
+ value: 88.05431550059166
2219
+ - type: manhattan_spearman
2220
+ value: 88.67610233020723
2221
+ - task:
2222
+ type: STS
2223
+ dataset:
2224
+ name: MTEB STS16
2225
+ type: mteb/sts16-sts
2226
+ config: default
2227
+ split: test
2228
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2229
+ metrics:
2230
+ - type: cos_sim_pearson
2231
+ value: 82.96134704624787
2232
+ - type: cos_sim_spearman
2233
+ value: 84.44062976314666
2234
+ - type: euclidean_pearson
2235
+ value: 84.03642536310323
2236
+ - type: euclidean_spearman
2237
+ value: 84.4535014579785
2238
+ - type: manhattan_pearson
2239
+ value: 83.92874228901483
2240
+ - type: manhattan_spearman
2241
+ value: 84.33634314951631
2242
+ - task:
2243
+ type: STS
2244
+ dataset:
2245
+ name: MTEB STS17 (en-de)
2246
+ type: mteb/sts17-crosslingual-sts
2247
+ config: en-de
2248
+ split: test
2249
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2250
+ metrics:
2251
+ - type: cos_sim_pearson
2252
+ value: 87.3154168064887
2253
+ - type: cos_sim_spearman
2254
+ value: 86.72393652571682
2255
+ - type: euclidean_pearson
2256
+ value: 86.04193246174164
2257
+ - type: euclidean_spearman
2258
+ value: 86.30482896608093
2259
+ - type: manhattan_pearson
2260
+ value: 85.95524084651859
2261
+ - type: manhattan_spearman
2262
+ value: 86.06031431994282
2263
+ - task:
2264
+ type: STS
2265
+ dataset:
2266
+ name: MTEB STS17 (en-en)
2267
+ type: mteb/sts17-crosslingual-sts
2268
+ config: en-en
2269
+ split: test
2270
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2271
+ metrics:
2272
+ - type: cos_sim_pearson
2273
+ value: 89.91079682750804
2274
+ - type: cos_sim_spearman
2275
+ value: 89.30961836617064
2276
+ - type: euclidean_pearson
2277
+ value: 88.86249564158628
2278
+ - type: euclidean_spearman
2279
+ value: 89.04772899592396
2280
+ - type: manhattan_pearson
2281
+ value: 88.85579791315043
2282
+ - type: manhattan_spearman
2283
+ value: 88.94190462541333
2284
+ - task:
2285
+ type: STS
2286
+ dataset:
2287
+ name: MTEB STS22 (en)
2288
+ type: mteb/sts22-crosslingual-sts
2289
+ config: en
2290
+ split: test
2291
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2292
+ metrics:
2293
+ - type: cos_sim_pearson
2294
+ value: 67.00558145551088
2295
+ - type: cos_sim_spearman
2296
+ value: 67.96601170393878
2297
+ - type: euclidean_pearson
2298
+ value: 67.87627043214336
2299
+ - type: euclidean_spearman
2300
+ value: 66.76402572303859
2301
+ - type: manhattan_pearson
2302
+ value: 67.88306560555452
2303
+ - type: manhattan_spearman
2304
+ value: 66.6273862035506
2305
+ - task:
2306
+ type: STS
2307
+ dataset:
2308
+ name: MTEB STS22 (de)
2309
+ type: mteb/sts22-crosslingual-sts
2310
+ config: de
2311
+ split: test
2312
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2313
+ metrics:
2314
+ - type: cos_sim_pearson
2315
+ value: 50.83759332748726
2316
+ - type: cos_sim_spearman
2317
+ value: 59.066344562858006
2318
+ - type: euclidean_pearson
2319
+ value: 50.08955848154131
2320
+ - type: euclidean_spearman
2321
+ value: 58.36517305855221
2322
+ - type: manhattan_pearson
2323
+ value: 50.05257267223111
2324
+ - type: manhattan_spearman
2325
+ value: 58.37570252804986
2326
+ - task:
2327
+ type: STS
2328
+ dataset:
2329
+ name: MTEB STS22 (de-en)
2330
+ type: mteb/sts22-crosslingual-sts
2331
+ config: de-en
2332
+ split: test
2333
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2334
+ metrics:
2335
+ - type: cos_sim_pearson
2336
+ value: 59.22749007956492
2337
+ - type: cos_sim_spearman
2338
+ value: 55.97282077657827
2339
+ - type: euclidean_pearson
2340
+ value: 62.10661533695752
2341
+ - type: euclidean_spearman
2342
+ value: 53.62780854854067
2343
+ - type: manhattan_pearson
2344
+ value: 62.37138085709719
2345
+ - type: manhattan_spearman
2346
+ value: 54.17556356828155
2347
+ - task:
2348
+ type: STS
2349
+ dataset:
2350
+ name: MTEB STSBenchmark
2351
+ type: mteb/stsbenchmark-sts
2352
+ config: default
2353
+ split: test
2354
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2355
+ metrics:
2356
+ - type: cos_sim_pearson
2357
+ value: 87.91145397065878
2358
+ - type: cos_sim_spearman
2359
+ value: 88.13960018389005
2360
+ - type: euclidean_pearson
2361
+ value: 87.67618876224006
2362
+ - type: euclidean_spearman
2363
+ value: 87.99119480810556
2364
+ - type: manhattan_pearson
2365
+ value: 87.67920297334753
2366
+ - type: manhattan_spearman
2367
+ value: 87.99113250064492
2368
+ - task:
2369
+ type: Reranking
2370
+ dataset:
2371
+ name: MTEB SciDocsRR
2372
+ type: mteb/scidocs-reranking
2373
+ config: default
2374
+ split: test
2375
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2376
+ metrics:
2377
+ - type: map
2378
+ value: 78.09133563707582
2379
+ - type: mrr
2380
+ value: 93.2415288052543
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ name: MTEB SciFact
2385
+ type: scifact
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 47.760999999999996
2392
+ - type: map_at_10
2393
+ value: 56.424
2394
+ - type: map_at_100
2395
+ value: 57.24399999999999
2396
+ - type: map_at_1000
2397
+ value: 57.278
2398
+ - type: map_at_3
2399
+ value: 53.68000000000001
2400
+ - type: map_at_5
2401
+ value: 55.442
2402
+ - type: mrr_at_1
2403
+ value: 50.666999999999994
2404
+ - type: mrr_at_10
2405
+ value: 58.012
2406
+ - type: mrr_at_100
2407
+ value: 58.736
2408
+ - type: mrr_at_1000
2409
+ value: 58.769000000000005
2410
+ - type: mrr_at_3
2411
+ value: 56.056
2412
+ - type: mrr_at_5
2413
+ value: 57.321999999999996
2414
+ - type: ndcg_at_1
2415
+ value: 50.666999999999994
2416
+ - type: ndcg_at_10
2417
+ value: 60.67700000000001
2418
+ - type: ndcg_at_100
2419
+ value: 64.513
2420
+ - type: ndcg_at_1000
2421
+ value: 65.62400000000001
2422
+ - type: ndcg_at_3
2423
+ value: 56.186
2424
+ - type: ndcg_at_5
2425
+ value: 58.692
2426
+ - type: precision_at_1
2427
+ value: 50.666999999999994
2428
+ - type: precision_at_10
2429
+ value: 8.200000000000001
2430
+ - type: precision_at_100
2431
+ value: 1.023
2432
+ - type: precision_at_1000
2433
+ value: 0.11199999999999999
2434
+ - type: precision_at_3
2435
+ value: 21.889
2436
+ - type: precision_at_5
2437
+ value: 14.866999999999999
2438
+ - type: recall_at_1
2439
+ value: 47.760999999999996
2440
+ - type: recall_at_10
2441
+ value: 72.006
2442
+ - type: recall_at_100
2443
+ value: 89.767
2444
+ - type: recall_at_1000
2445
+ value: 98.833
2446
+ - type: recall_at_3
2447
+ value: 60.211000000000006
2448
+ - type: recall_at_5
2449
+ value: 66.3
2450
+ - task:
2451
+ type: PairClassification
2452
+ dataset:
2453
+ name: MTEB SprintDuplicateQuestions
2454
+ type: mteb/sprintduplicatequestions-pairclassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2458
+ metrics:
2459
+ - type: cos_sim_accuracy
2460
+ value: 99.79009900990098
2461
+ - type: cos_sim_ap
2462
+ value: 94.86690691995835
2463
+ - type: cos_sim_f1
2464
+ value: 89.37875751503007
2465
+ - type: cos_sim_precision
2466
+ value: 89.5582329317269
2467
+ - type: cos_sim_recall
2468
+ value: 89.2
2469
+ - type: dot_accuracy
2470
+ value: 99.76336633663367
2471
+ - type: dot_ap
2472
+ value: 94.26453740761586
2473
+ - type: dot_f1
2474
+ value: 88.00783162016641
2475
+ - type: dot_precision
2476
+ value: 86.19367209971237
2477
+ - type: dot_recall
2478
+ value: 89.9
2479
+ - type: euclidean_accuracy
2480
+ value: 99.7940594059406
2481
+ - type: euclidean_ap
2482
+ value: 94.85459757524379
2483
+ - type: euclidean_f1
2484
+ value: 89.62779156327544
2485
+ - type: euclidean_precision
2486
+ value: 88.96551724137932
2487
+ - type: euclidean_recall
2488
+ value: 90.3
2489
+ - type: manhattan_accuracy
2490
+ value: 99.79009900990098
2491
+ - type: manhattan_ap
2492
+ value: 94.76971336654465
2493
+ - type: manhattan_f1
2494
+ value: 89.35323383084577
2495
+ - type: manhattan_precision
2496
+ value: 88.91089108910892
2497
+ - type: manhattan_recall
2498
+ value: 89.8
2499
+ - type: max_accuracy
2500
+ value: 99.7940594059406
2501
+ - type: max_ap
2502
+ value: 94.86690691995835
2503
+ - type: max_f1
2504
+ value: 89.62779156327544
2505
+ - task:
2506
+ type: Clustering
2507
+ dataset:
2508
+ name: MTEB StackExchangeClustering
2509
+ type: mteb/stackexchange-clustering
2510
+ config: default
2511
+ split: test
2512
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2513
+ metrics:
2514
+ - type: v_measure
2515
+ value: 55.38197670064987
2516
+ - task:
2517
+ type: Clustering
2518
+ dataset:
2519
+ name: MTEB StackExchangeClusteringP2P
2520
+ type: mteb/stackexchange-clustering-p2p
2521
+ config: default
2522
+ split: test
2523
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2524
+ metrics:
2525
+ - type: v_measure
2526
+ value: 33.08330158937971
2527
+ - task:
2528
+ type: Reranking
2529
+ dataset:
2530
+ name: MTEB StackOverflowDupQuestions
2531
+ type: mteb/stackoverflowdupquestions-reranking
2532
+ config: default
2533
+ split: test
2534
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2535
+ metrics:
2536
+ - type: map
2537
+ value: 49.50367079063226
2538
+ - type: mrr
2539
+ value: 50.30444943128768
2540
+ - task:
2541
+ type: Summarization
2542
+ dataset:
2543
+ name: MTEB SummEval
2544
+ type: mteb/summeval
2545
+ config: default
2546
+ split: test
2547
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2548
+ metrics:
2549
+ - type: cos_sim_pearson
2550
+ value: 30.37739520909561
2551
+ - type: cos_sim_spearman
2552
+ value: 31.548500943973913
2553
+ - type: dot_pearson
2554
+ value: 29.983610104303
2555
+ - type: dot_spearman
2556
+ value: 29.90185869098618
2557
+ - task:
2558
+ type: Retrieval
2559
+ dataset:
2560
+ name: MTEB TRECCOVID
2561
+ type: trec-covid
2562
+ config: default
2563
+ split: test
2564
+ revision: None
2565
+ metrics:
2566
+ - type: map_at_1
2567
+ value: 0.198
2568
+ - type: map_at_10
2569
+ value: 1.5810000000000002
2570
+ - type: map_at_100
2571
+ value: 9.064
2572
+ - type: map_at_1000
2573
+ value: 22.161
2574
+ - type: map_at_3
2575
+ value: 0.536
2576
+ - type: map_at_5
2577
+ value: 0.8370000000000001
2578
+ - type: mrr_at_1
2579
+ value: 80.0
2580
+ - type: mrr_at_10
2581
+ value: 86.75
2582
+ - type: mrr_at_100
2583
+ value: 86.799
2584
+ - type: mrr_at_1000
2585
+ value: 86.799
2586
+ - type: mrr_at_3
2587
+ value: 85.0
2588
+ - type: mrr_at_5
2589
+ value: 86.5
2590
+ - type: ndcg_at_1
2591
+ value: 73.0
2592
+ - type: ndcg_at_10
2593
+ value: 65.122
2594
+ - type: ndcg_at_100
2595
+ value: 51.853
2596
+ - type: ndcg_at_1000
2597
+ value: 47.275
2598
+ - type: ndcg_at_3
2599
+ value: 66.274
2600
+ - type: ndcg_at_5
2601
+ value: 64.826
2602
+ - type: precision_at_1
2603
+ value: 80.0
2604
+ - type: precision_at_10
2605
+ value: 70.19999999999999
2606
+ - type: precision_at_100
2607
+ value: 53.480000000000004
2608
+ - type: precision_at_1000
2609
+ value: 20.946
2610
+ - type: precision_at_3
2611
+ value: 71.333
2612
+ - type: precision_at_5
2613
+ value: 70.0
2614
+ - type: recall_at_1
2615
+ value: 0.198
2616
+ - type: recall_at_10
2617
+ value: 1.884
2618
+ - type: recall_at_100
2619
+ value: 12.57
2620
+ - type: recall_at_1000
2621
+ value: 44.208999999999996
2622
+ - type: recall_at_3
2623
+ value: 0.5890000000000001
2624
+ - type: recall_at_5
2625
+ value: 0.95
2626
+ - task:
2627
+ type: Clustering
2628
+ dataset:
2629
+ name: MTEB TenKGnadClusteringP2P
2630
+ type: slvnwhrl/tenkgnad-clustering-p2p
2631
+ config: default
2632
+ split: test
2633
+ revision: 5c59e41555244b7e45c9a6be2d720ab4bafae558
2634
+ metrics:
2635
+ - type: v_measure
2636
+ value: 42.84199261133083
2637
+ - task:
2638
+ type: Clustering
2639
+ dataset:
2640
+ name: MTEB TenKGnadClusteringS2S
2641
+ type: slvnwhrl/tenkgnad-clustering-s2s
2642
+ config: default
2643
+ split: test
2644
+ revision: 6cddbe003f12b9b140aec477b583ac4191f01786
2645
+ metrics:
2646
+ - type: v_measure
2647
+ value: 23.689557114798838
2648
+ - task:
2649
+ type: Retrieval
2650
+ dataset:
2651
+ name: MTEB Touche2020
2652
+ type: webis-touche2020
2653
+ config: default
2654
+ split: test
2655
+ revision: None
2656
+ metrics:
2657
+ - type: map_at_1
2658
+ value: 1.941
2659
+ - type: map_at_10
2660
+ value: 8.222
2661
+ - type: map_at_100
2662
+ value: 14.277999999999999
2663
+ - type: map_at_1000
2664
+ value: 15.790000000000001
2665
+ - type: map_at_3
2666
+ value: 4.4670000000000005
2667
+ - type: map_at_5
2668
+ value: 5.762
2669
+ - type: mrr_at_1
2670
+ value: 24.490000000000002
2671
+ - type: mrr_at_10
2672
+ value: 38.784
2673
+ - type: mrr_at_100
2674
+ value: 39.724
2675
+ - type: mrr_at_1000
2676
+ value: 39.724
2677
+ - type: mrr_at_3
2678
+ value: 33.333
2679
+ - type: mrr_at_5
2680
+ value: 37.415
2681
+ - type: ndcg_at_1
2682
+ value: 22.448999999999998
2683
+ - type: ndcg_at_10
2684
+ value: 21.026
2685
+ - type: ndcg_at_100
2686
+ value: 33.721000000000004
2687
+ - type: ndcg_at_1000
2688
+ value: 45.045
2689
+ - type: ndcg_at_3
2690
+ value: 20.053
2691
+ - type: ndcg_at_5
2692
+ value: 20.09
2693
+ - type: precision_at_1
2694
+ value: 24.490000000000002
2695
+ - type: precision_at_10
2696
+ value: 19.796
2697
+ - type: precision_at_100
2698
+ value: 7.469
2699
+ - type: precision_at_1000
2700
+ value: 1.48
2701
+ - type: precision_at_3
2702
+ value: 21.769
2703
+ - type: precision_at_5
2704
+ value: 21.224
2705
+ - type: recall_at_1
2706
+ value: 1.941
2707
+ - type: recall_at_10
2708
+ value: 14.915999999999999
2709
+ - type: recall_at_100
2710
+ value: 46.155
2711
+ - type: recall_at_1000
2712
+ value: 80.664
2713
+ - type: recall_at_3
2714
+ value: 5.629
2715
+ - type: recall_at_5
2716
+ value: 8.437
2717
+ - task:
2718
+ type: Classification
2719
+ dataset:
2720
+ name: MTEB ToxicConversationsClassification
2721
+ type: mteb/toxic_conversations_50k
2722
+ config: default
2723
+ split: test
2724
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2725
+ metrics:
2726
+ - type: accuracy
2727
+ value: 69.64800000000001
2728
+ - type: ap
2729
+ value: 12.914826731261094
2730
+ - type: f1
2731
+ value: 53.05213503422915
2732
+ - task:
2733
+ type: Classification
2734
+ dataset:
2735
+ name: MTEB TweetSentimentExtractionClassification
2736
+ type: mteb/tweet_sentiment_extraction
2737
+ config: default
2738
+ split: test
2739
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2740
+ metrics:
2741
+ - type: accuracy
2742
+ value: 60.427277872099594
2743
+ - type: f1
2744
+ value: 60.78292007556828
2745
+ - task:
2746
+ type: Clustering
2747
+ dataset:
2748
+ name: MTEB TwentyNewsgroupsClustering
2749
+ type: mteb/twentynewsgroups-clustering
2750
+ config: default
2751
+ split: test
2752
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2753
+ metrics:
2754
+ - type: v_measure
2755
+ value: 40.48134168406559
2756
+ - task:
2757
+ type: PairClassification
2758
+ dataset:
2759
+ name: MTEB TwitterSemEval2015
2760
+ type: mteb/twittersemeval2015-pairclassification
2761
+ config: default
2762
+ split: test
2763
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2764
+ metrics:
2765
+ - type: cos_sim_accuracy
2766
+ value: 84.79465935506944
2767
+ - type: cos_sim_ap
2768
+ value: 70.24589055290592
2769
+ - type: cos_sim_f1
2770
+ value: 65.0994575045208
2771
+ - type: cos_sim_precision
2772
+ value: 63.76518218623482
2773
+ - type: cos_sim_recall
2774
+ value: 66.49076517150397
2775
+ - type: dot_accuracy
2776
+ value: 84.63968528342374
2777
+ - type: dot_ap
2778
+ value: 69.84683095084355
2779
+ - type: dot_f1
2780
+ value: 64.50606169727523
2781
+ - type: dot_precision
2782
+ value: 59.1719885487778
2783
+ - type: dot_recall
2784
+ value: 70.89709762532982
2785
+ - type: euclidean_accuracy
2786
+ value: 84.76485664898374
2787
+ - type: euclidean_ap
2788
+ value: 70.20556438685551
2789
+ - type: euclidean_f1
2790
+ value: 65.06796614516543
2791
+ - type: euclidean_precision
2792
+ value: 63.29840319361277
2793
+ - type: euclidean_recall
2794
+ value: 66.93931398416886
2795
+ - type: manhattan_accuracy
2796
+ value: 84.72313286046374
2797
+ - type: manhattan_ap
2798
+ value: 70.17151475534308
2799
+ - type: manhattan_f1
2800
+ value: 65.31379180759113
2801
+ - type: manhattan_precision
2802
+ value: 62.17505366086334
2803
+ - type: manhattan_recall
2804
+ value: 68.7862796833773
2805
+ - type: max_accuracy
2806
+ value: 84.79465935506944
2807
+ - type: max_ap
2808
+ value: 70.24589055290592
2809
+ - type: max_f1
2810
+ value: 65.31379180759113
2811
+ - task:
2812
+ type: PairClassification
2813
+ dataset:
2814
+ name: MTEB TwitterURLCorpus
2815
+ type: mteb/twitterurlcorpus-pairclassification
2816
+ config: default
2817
+ split: test
2818
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2819
+ metrics:
2820
+ - type: cos_sim_accuracy
2821
+ value: 88.95874568246207
2822
+ - type: cos_sim_ap
2823
+ value: 85.82517548264127
2824
+ - type: cos_sim_f1
2825
+ value: 78.22288041466125
2826
+ - type: cos_sim_precision
2827
+ value: 75.33875338753387
2828
+ - type: cos_sim_recall
2829
+ value: 81.33661841700031
2830
+ - type: dot_accuracy
2831
+ value: 88.836496293709
2832
+ - type: dot_ap
2833
+ value: 85.53430720252186
2834
+ - type: dot_f1
2835
+ value: 78.10616085869725
2836
+ - type: dot_precision
2837
+ value: 74.73269555430501
2838
+ - type: dot_recall
2839
+ value: 81.79858330766862
2840
+ - type: euclidean_accuracy
2841
+ value: 88.92769821865176
2842
+ - type: euclidean_ap
2843
+ value: 85.65904346964223
2844
+ - type: euclidean_f1
2845
+ value: 77.98774074208407
2846
+ - type: euclidean_precision
2847
+ value: 73.72282795035315
2848
+ - type: euclidean_recall
2849
+ value: 82.77640899291654
2850
+ - type: manhattan_accuracy
2851
+ value: 88.86366282454303
2852
+ - type: manhattan_ap
2853
+ value: 85.61599642231819
2854
+ - type: manhattan_f1
2855
+ value: 78.01480509061737
2856
+ - type: manhattan_precision
2857
+ value: 74.10460685833044
2858
+ - type: manhattan_recall
2859
+ value: 82.36064059131506
2860
+ - type: max_accuracy
2861
+ value: 88.95874568246207
2862
+ - type: max_ap
2863
+ value: 85.82517548264127
2864
+ - type: max_f1
2865
+ value: 78.22288041466125
2866
+ - task:
2867
+ type: Retrieval
2868
+ dataset:
2869
+ name: MTEB WikiCLIR
2870
+ type: None
2871
+ config: default
2872
+ split: test
2873
+ revision: None
2874
+ metrics:
2875
+ - type: map_at_1
2876
+ value: 3.9539999999999997
2877
+ - type: map_at_10
2878
+ value: 7.407
2879
+ - type: map_at_100
2880
+ value: 8.677999999999999
2881
+ - type: map_at_1000
2882
+ value: 9.077
2883
+ - type: map_at_3
2884
+ value: 5.987
2885
+ - type: map_at_5
2886
+ value: 6.6979999999999995
2887
+ - type: mrr_at_1
2888
+ value: 35.65
2889
+ - type: mrr_at_10
2890
+ value: 45.097
2891
+ - type: mrr_at_100
2892
+ value: 45.83
2893
+ - type: mrr_at_1000
2894
+ value: 45.871
2895
+ - type: mrr_at_3
2896
+ value: 42.63
2897
+ - type: mrr_at_5
2898
+ value: 44.104
2899
+ - type: ndcg_at_1
2900
+ value: 29.215000000000003
2901
+ - type: ndcg_at_10
2902
+ value: 22.694
2903
+ - type: ndcg_at_100
2904
+ value: 22.242
2905
+ - type: ndcg_at_1000
2906
+ value: 27.069
2907
+ - type: ndcg_at_3
2908
+ value: 27.641
2909
+ - type: ndcg_at_5
2910
+ value: 25.503999999999998
2911
+ - type: precision_at_1
2912
+ value: 35.65
2913
+ - type: precision_at_10
2914
+ value: 12.795000000000002
2915
+ - type: precision_at_100
2916
+ value: 3.354
2917
+ - type: precision_at_1000
2918
+ value: 0.743
2919
+ - type: precision_at_3
2920
+ value: 23.403
2921
+ - type: precision_at_5
2922
+ value: 18.474
2923
+ - type: recall_at_1
2924
+ value: 3.9539999999999997
2925
+ - type: recall_at_10
2926
+ value: 11.301
2927
+ - type: recall_at_100
2928
+ value: 22.919999999999998
2929
+ - type: recall_at_1000
2930
+ value: 40.146
2931
+ - type: recall_at_3
2932
+ value: 7.146
2933
+ - type: recall_at_5
2934
+ value: 8.844000000000001
2935
+ - task:
2936
+ type: Retrieval
2937
+ dataset:
2938
+ name: MTEB XMarket
2939
+ type: jinaai/xmarket_de
2940
+ config: default
2941
+ split: test
2942
+ revision: 2336818db4c06570fcdf263e1bcb9993b786f67a
2943
+ metrics:
2944
+ - type: map_at_1
2945
+ value: 4.872
2946
+ - type: map_at_10
2947
+ value: 10.658
2948
+ - type: map_at_100
2949
+ value: 13.422999999999998
2950
+ - type: map_at_1000
2951
+ value: 14.245
2952
+ - type: map_at_3
2953
+ value: 7.857
2954
+ - type: map_at_5
2955
+ value: 9.142999999999999
2956
+ - type: mrr_at_1
2957
+ value: 16.744999999999997
2958
+ - type: mrr_at_10
2959
+ value: 24.416
2960
+ - type: mrr_at_100
2961
+ value: 25.432
2962
+ - type: mrr_at_1000
2963
+ value: 25.502999999999997
2964
+ - type: mrr_at_3
2965
+ value: 22.096
2966
+ - type: mrr_at_5
2967
+ value: 23.421
2968
+ - type: ndcg_at_1
2969
+ value: 16.695999999999998
2970
+ - type: ndcg_at_10
2971
+ value: 18.66
2972
+ - type: ndcg_at_100
2973
+ value: 24.314
2974
+ - type: ndcg_at_1000
2975
+ value: 29.846
2976
+ - type: ndcg_at_3
2977
+ value: 17.041999999999998
2978
+ - type: ndcg_at_5
2979
+ value: 17.585
2980
+ - type: precision_at_1
2981
+ value: 16.695999999999998
2982
+ - type: precision_at_10
2983
+ value: 10.374
2984
+ - type: precision_at_100
2985
+ value: 3.988
2986
+ - type: precision_at_1000
2987
+ value: 1.1860000000000002
2988
+ - type: precision_at_3
2989
+ value: 14.21
2990
+ - type: precision_at_5
2991
+ value: 12.623000000000001
2992
+ - type: recall_at_1
2993
+ value: 4.872
2994
+ - type: recall_at_10
2995
+ value: 18.624
2996
+ - type: recall_at_100
2997
+ value: 40.988
2998
+ - type: recall_at_1000
2999
+ value: 65.33
3000
+ - type: recall_at_3
3001
+ value: 10.162
3002
+ - type: recall_at_5
3003
+ value: 13.517999999999999
3004
+ ---
3005
+
3006
+ # MAY-A/jina-embeddings-v2-base-de-Q5_K_M-GGUF
3007
+ This model was converted to GGUF format from [`jinaai/jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
3008
+ Refer to the [original model card](https://huggingface.co/jinaai/jina-embeddings-v2-base-de) for more details on the model.
3009
+
3010
+ ## Use with llama.cpp
3011
+ Install llama.cpp through brew (works on Mac and Linux)
3012
+
3013
+ ```bash
3014
+ brew install llama.cpp
3015
+
3016
+ ```
3017
+ Invoke the llama.cpp server or the CLI.
3018
+
3019
+ ### CLI:
3020
+ ```bash
3021
+ llama-cli --hf-repo MAY-A/jina-embeddings-v2-base-de-Q5_K_M-GGUF --hf-file jina-embeddings-v2-base-de-q5_k_m.gguf -p "The meaning to life and the universe is"
3022
+ ```
3023
+
3024
+ ### Server:
3025
+ ```bash
3026
+ llama-server --hf-repo MAY-A/jina-embeddings-v2-base-de-Q5_K_M-GGUF --hf-file jina-embeddings-v2-base-de-q5_k_m.gguf -c 2048
3027
+ ```
3028
+
3029
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
3030
+
3031
+ Step 1: Clone llama.cpp from GitHub.
3032
+ ```
3033
+ git clone https://github.com/ggerganov/llama.cpp
3034
+ ```
3035
+
3036
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
3037
+ ```
3038
+ cd llama.cpp && LLAMA_CURL=1 make
3039
+ ```
3040
+
3041
+ Step 3: Run inference through the main binary.
3042
+ ```
3043
+ ./llama-cli --hf-repo MAY-A/jina-embeddings-v2-base-de-Q5_K_M-GGUF --hf-file jina-embeddings-v2-base-de-q5_k_m.gguf -p "The meaning to life and the universe is"
3044
+ ```
3045
+ or
3046
+ ```
3047
+ ./llama-server --hf-repo MAY-A/jina-embeddings-v2-base-de-Q5_K_M-GGUF --hf-file jina-embeddings-v2-base-de-q5_k_m.gguf -c 2048
3048
+ ```