Text Generation
Transformers
PyTorch
English
llama
custom_code
text-generation-inference
Inference Endpoints
omkarthawakar commited on
Commit
b65a715
·
verified ·
1 Parent(s): b7e8543

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -7
README.md CHANGED
@@ -11,18 +11,27 @@ pipeline_tag: text-generation
11
 
12
  # MobiLlama-1B-Chat
13
 
 
 
14
  We present MobiLlama-1.2B-Chat, an instruction following model finetuned on [MBZUAI/MobiLlama-1B](https://huggingface.co/MBZUAI/MobiLlama-1B).
15
 
 
 
 
 
 
 
16
  ## Model Description
17
 
18
- - **Model type:** Language model with the same architecture as LLaMA-7B
19
  - **Language(s) (NLP):** English
20
  - **License:** Apache 2.0
21
  - **Resources for more information:**
22
- - [Metrics](https://github.com/LLM360/Analysis360)
23
- - [Finetuning Code](https://github.com/lm-sys/FastChat)
24
-
25
 
 
26
  # Loading MobiLlama-1B-Chat
27
 
28
  ```python
@@ -48,6 +57,15 @@ Alternatively, you may use [FastChat](https://github.com/lm-sys/FastChat):
48
  python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-1B-Chat
49
  ```
50
 
 
 
 
 
 
 
 
 
 
51
 
52
  ## Hyperparameters
53
  | Hyperparameter | Value |
@@ -86,7 +104,9 @@ python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-1B-Chat
86
  | Winogrande | 0.5659 | 0.5966 |
87
 
88
 
89
- ## Intended Uses
90
- Given the nature of the training data, the MobiLlama-1B model is best suited for prompts using the QA format, the chat format, and the code format.
91
 
92
- ## Citation
 
 
 
11
 
12
  # MobiLlama-1B-Chat
13
 
14
+ <center><img src="MobileLLaMa.png" alt="mobillama logo" width="300"/></center>
15
+
16
  We present MobiLlama-1.2B-Chat, an instruction following model finetuned on [MBZUAI/MobiLlama-1B](https://huggingface.co/MBZUAI/MobiLlama-1B).
17
 
18
+ ## Model Summary
19
+
20
+ "Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development. However, LLMs do not suit well for scenarios that require on-device processing, energy efficiency, low memory footprint, and response efficiency. These requisites are crucial for privacy, security, and sustainable deployment. This paper explores the ‘less is more’ paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource-constrained devices. Our primary contribution is the introduction of an accurate and fully transparent open-source 0.5 billion (0.5B) parameter SLM, named MobiLlama, catering to the specific needs of resource-constrained computing with an emphasis on enhanced performance with reduced resource demands. MobiLlama is a SLM design that initiates from a larger model and applies a careful parameter sharing scheme to reduce both the pre-training and the deployment cost. Our work strives to not only bridge the gap in open-source SLMs but also ensures full transparency, where complete training data pipeline, training code, model weights, and over 300 checkpoints along with evaluation codes are available on our [Github](https://github.com/mbzuai-oryx/MobiLlama).
21
+
22
+ [Arxiv Paper Link]('')
23
+
24
  ## Model Description
25
 
26
+ - **Model type:** Small Language Model (SLM) built using the architecture design of LLaMA-7B
27
  - **Language(s) (NLP):** English
28
  - **License:** Apache 2.0
29
  - **Resources for more information:**
30
+ - [Training Code](https://github.com/mbzuai-oryx/MobiLlama)
31
+ - [Data Preparation](https://github.com/LLM360/amber-data-prep)
32
+ - [Fully processed Amber pretraining data](https://huggingface.co/datasets/LLM360/AmberDatasets)
33
 
34
+
35
  # Loading MobiLlama-1B-Chat
36
 
37
  ```python
 
57
  python3 -m fastchat.serve.cli --model-path MBZUAI/MobiLlama-1B-Chat
58
  ```
59
 
60
+ # MobiLlama-1B-Chat Finetuning Details
61
+
62
+ ## DataMix
63
+ | Subset | Number of rows | License |
64
+ | ----------- | ----------- | ----------- |
65
+ | WizardLM/WizardLM_evol_instruct_V2_196k | 143k | |
66
+ | icybee/share_gpt_90k_v1 | 90k | cc0-1.0 |
67
+ | Total | 233k | |
68
+
69
 
70
  ## Hyperparameters
71
  | Hyperparameter | Value |
 
104
  | Winogrande | 0.5659 | 0.5966 |
105
 
106
 
107
+ ## Citation
108
+ **BibTeX:**
109
 
110
+ ```bibtex
111
+ coming soon
112
+ ```