File size: 2,602 Bytes
e513b14 06c02bf e513b14 0bc4382 e513b14 786147e e513b14 3538f2b 879eaef e513b14 0e776e8 e513b14 0e776e8 20cec2c 0e776e8 e513b14 0e776e8 e513b14 0e776e8 e513b14 0e776e8 0bc4382 0e776e8 e513b14 0e776e8 e513b14 0e776e8 e513b14 0e776e8 e513b14 0e776e8 3538f2b 0e776e8 e513b14 0e776e8 e513b14 0e776e8 e513b14 0e776e8 bff7744 0e776e8 e513b14 0e776e8 e513b14 0e776e8 0bc4382 0e776e8 3538f2b 0e776e8 06c02bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
library_name: transformers
base_model:
- meta-llama/Llama-3.2-3B-Instruct
---
# MISHANM/Bangla_text_generation_Llama3.2_3B_instruction
This model is fine-tuned for the Bangla language, capable of answering queries and translating text from English to Bangla. It leverages advanced natural language processing techniques to provide accurate and context-aware responses.
## Model Details
1. Language: Bangla
2. Tasks: Question Answering, Translation (English to Bangla
3. Base Model: meta-llama/Llama-3.2-3B-Instruct
# Training Details
The model is trained on approx 29K instruction samples.
1. GPUs: 2*AMD Instinct MI210
2. Training Time: 2:56:07 hours
## Inference with HuggingFace
```python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Bangla_text_generation_Llama3.2_3B_instruction"
model = AutoModelForCausalLM.from_pretrained(model_path)
# Wrap the model with DataParallel if multiple GPUs are available
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs")
model = torch.nn.DataParallel(model)
# Move the model to the appropriate device
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "You are a Bangla language expert and linguist, with same knowledge give answers in Bangla language. ",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
output = model.module.generate( # Use model.module for DataParallel
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """Give me a story."""
translated_text = generate_text(prompt)
print(translated_text)
```
## Citation Information
```
@misc{MISHANM/Bangla_text_generation_Llama3.2_3B_instruction,
author = {Mishan Maurya},
title = {Introducing Fine Tuned LLM for Bangla Language},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
``` |