File size: 2,602 Bytes
e513b14
 
06c02bf
 
e513b14
 
0bc4382
e513b14
786147e
e513b14
 
 
 
3538f2b
879eaef
 
e513b14
 
 
0e776e8
e513b14
0e776e8
20cec2c
0e776e8
 
e513b14
 
0e776e8
 
 
 
 
e513b14
0e776e8
 
e513b14
0e776e8
0bc4382
0e776e8
e513b14
0e776e8
 
 
 
e513b14
0e776e8
 
e513b14
0e776e8
e513b14
0e776e8
 
 
 
 
 
3538f2b
0e776e8
 
 
e513b14
0e776e8
 
e513b14
0e776e8
 
 
 
 
 
e513b14
0e776e8
bff7744
0e776e8
 
e513b14
 
0e776e8
e513b14
0e776e8
 
0bc4382
0e776e8
3538f2b
0e776e8
 
 
 
 
06c02bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
base_model:
- meta-llama/Llama-3.2-3B-Instruct
---

# MISHANM/Bangla_text_generation_Llama3.2_3B_instruction

This model is fine-tuned for the Bangla language, capable of answering queries and translating text from English to Bangla. It leverages advanced natural language processing techniques to provide accurate and context-aware responses.



## Model Details
1. Language: Bangla
2. Tasks: Question Answering, Translation (English to Bangla
3. Base Model: meta-llama/Llama-3.2-3B-Instruct



# Training Details

The model is trained on approx 29K instruction samples.
1. GPUs: 2*AMD Instinct MI210 
2. Training Time: 2:56:07 hours
   


 ## Inference with HuggingFace
 ```python3
 
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Set the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Bangla_text_generation_Llama3.2_3B_instruction"
model = AutoModelForCausalLM.from_pretrained(model_path)

# Wrap the model with DataParallel if multiple GPUs are available
if torch.cuda.device_count() > 1:
    print(f"Using {torch.cuda.device_count()} GPUs")
    model = torch.nn.DataParallel(model)

# Move the model to the appropriate device
model.to(device)

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
    # Format the prompt according to the chat template
    messages = [
        {
            "role": "system",
            "content": "You are a Bangla language expert and linguist, with same knowledge give answers in Bangla language. ",
        },
        {"role": "user", "content": prompt}
    ]

    # Apply the chat template
    formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

    # Tokenize and generate output
    inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
    output = model.module.generate(  # Use model.module for DataParallel
        **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
    )
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """Give me a story."""
translated_text = generate_text(prompt)
print(translated_text)


```

## Citation Information
```
@misc{MISHANM/Bangla_text_generation_Llama3.2_3B_instruction,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Bangla Language},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
```