File size: 2,905 Bytes
a888319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121f9fe
a888319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121f9fe
a888319
 
 
 
121f9fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a888319
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: tiiuae/falcon-7b-instruct
model-index:
- name: Falcon-7b-Finetuned-Extented-MBPP-Dataset-Synthetic
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Falcon-7b-Finetuned-Extented-MBPP-Dataset-Synthetic

This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9466

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.9771        | 0.18  | 500   | 1.6788          |
| 0.9972        | 0.36  | 1000  | 1.2072          |
| 1.0858        | 0.53  | 1500  | 1.0909          |
| 0.8945        | 0.71  | 2000  | 1.0609          |
| 0.5405        | 0.89  | 2500  | 1.0325          |
| 1.3803        | 1.07  | 3000  | 1.0174          |
| 0.4474        | 1.25  | 3500  | 1.0085          |
| 0.635         | 1.43  | 4000  | 1.0013          |
| 0.3225        | 1.6   | 4500  | 0.9901          |
| 0.6406        | 1.78  | 5000  | 0.9893          |
| 0.7074        | 1.96  | 5500  | 0.9835          |
| 0.577         | 2.14  | 6000  | 0.9836          |
| 0.7014        | 2.32  | 6500  | 0.9718          |
| 0.9365        | 2.49  | 7000  | 0.9651          |
| 0.9926        | 2.67  | 7500  | 0.9637          |
| 0.5796        | 2.85  | 8000  | 0.9621          |
| 1.1842        | 3.03  | 8500  | 0.9601          |
| 0.8448        | 3.21  | 9000  | 0.9572          |
| 0.3799        | 3.39  | 9500  | 0.9496          |
| 0.6202        | 3.56  | 10000 | 0.9514          |
| 0.5857        | 3.74  | 10500 | 0.9521          |
| 0.6707        | 3.92  | 11000 | 0.9497          |
| 0.5089        | 4.1   | 11500 | 0.9480          |
| 0.4459        | 4.28  | 12000 | 0.9472          |
| 0.5792        | 4.45  | 12500 | 0.9469          |
| 0.1743        | 4.63  | 13000 | 0.9467          |
| 0.7094        | 4.81  | 13500 | 0.9465          |
| 0.4949        | 4.99  | 14000 | 0.9466          |


### Framework versions

- PEFT 0.10.1.dev0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2