File size: 2,905 Bytes
a888319 121f9fe a888319 121f9fe a888319 121f9fe a888319 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: tiiuae/falcon-7b-instruct
model-index:
- name: Falcon-7b-Finetuned-Extented-MBPP-Dataset-Synthetic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Falcon-7b-Finetuned-Extented-MBPP-Dataset-Synthetic
This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9466
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.9771 | 0.18 | 500 | 1.6788 |
| 0.9972 | 0.36 | 1000 | 1.2072 |
| 1.0858 | 0.53 | 1500 | 1.0909 |
| 0.8945 | 0.71 | 2000 | 1.0609 |
| 0.5405 | 0.89 | 2500 | 1.0325 |
| 1.3803 | 1.07 | 3000 | 1.0174 |
| 0.4474 | 1.25 | 3500 | 1.0085 |
| 0.635 | 1.43 | 4000 | 1.0013 |
| 0.3225 | 1.6 | 4500 | 0.9901 |
| 0.6406 | 1.78 | 5000 | 0.9893 |
| 0.7074 | 1.96 | 5500 | 0.9835 |
| 0.577 | 2.14 | 6000 | 0.9836 |
| 0.7014 | 2.32 | 6500 | 0.9718 |
| 0.9365 | 2.49 | 7000 | 0.9651 |
| 0.9926 | 2.67 | 7500 | 0.9637 |
| 0.5796 | 2.85 | 8000 | 0.9621 |
| 1.1842 | 3.03 | 8500 | 0.9601 |
| 0.8448 | 3.21 | 9000 | 0.9572 |
| 0.3799 | 3.39 | 9500 | 0.9496 |
| 0.6202 | 3.56 | 10000 | 0.9514 |
| 0.5857 | 3.74 | 10500 | 0.9521 |
| 0.6707 | 3.92 | 11000 | 0.9497 |
| 0.5089 | 4.1 | 11500 | 0.9480 |
| 0.4459 | 4.28 | 12000 | 0.9472 |
| 0.5792 | 4.45 | 12500 | 0.9469 |
| 0.1743 | 4.63 | 13000 | 0.9467 |
| 0.7094 | 4.81 | 13500 | 0.9465 |
| 0.4949 | 4.99 | 14000 | 0.9466 |
### Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2 |