File size: 1,946 Bytes
d2594be
a5f2e96
 
d2594be
a5f2e96
 
 
 
 
d2594be
a5f2e96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
library_name: transformers
base_model: meta-llama/Llama-2-7b-hf
license: llama2
pipeline_tag: text-generation
language:
- multilingual
datasets:
- cis-lmu/Glot500
---

# MaLA-500: Massive Language Adaptation of Large Language Models

MaLA-500 is a novel large language model designed to cover an extensive range of 534 languages. This model builds upon LLaMA 2 7B and integrates continued pretraining with vocabulary extension, with an expanded vocabulary size of 260,164, and LoRA low-rank adaptation.


- **Continued Pretraining:** Enhances the model's ability to adapt to a wide range of languages.
- **LoRA Low-Rank Adaptation:** LoRA low-rank adaptation refines the model's adaptation capabilities.
- **Vocabulary Extension:** MaLA-500 boasts an extended vocabulary size of 260,164.
- **Multilingual Proficiency:** Trained on Glot500-c, covering 534 languages.

With vocabulary extension and LoRA modules, the MaLA-500 introduces additional 2.1B trainable parameters, making the total parameters to be 10.7B.

Please refer to [our paper](https://arxiv.org/pdf/2401.13303.pdf) for more details.

## How to Get Started with the Model

Requirements:
```
transformers>=4.36.1
peft>=0.6.2
```

Use the code below to get started with the model.

``` python
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

base_model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf')
base_model.resize_token_embeddings(260164)
tokenizer = AutoTokenizer.from_pretrained('MaLA-LM/mala-500-10b')
model = PeftModel.from_pretrained(base_model, 'MaLA-LM/mala-500-10b')
```

## Citation

```
@misc{lin2024mala500,
      title={MaLA-500: Massive Language Adaptation of Large Language Models}, 
      author={Peiqin Lin and Shaoxiong Ji and Jörg Tiedemann and André F. T. Martins and Hinrich Schütze},
      year={2024},
      eprint={2401.13303},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```