Mahadih534 commited on
Commit
ca3f66f
·
verified ·
1 Parent(s): 0278704

Upload 24 files

Browse files
train-v5/F1_curve (1).png ADDED
train-v5/F1_curve.png ADDED
train-v5/PR_curve.png ADDED
train-v5/P_curve.png ADDED
train-v5/R_curve.png ADDED
train-v5/args.yaml ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: detect
2
+ mode: train
3
+ model: yolov8s.pt
4
+ data: /kaggle/working/final-dataset-v4/data.yaml
5
+ epochs: 65
6
+ time: null
7
+ patience: 100
8
+ batch: 32
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device:
14
+ - 0
15
+ - 1
16
+ workers: 16
17
+ project: null
18
+ name: train2
19
+ exist_ok: false
20
+ pretrained: true
21
+ optimizer: auto
22
+ verbose: true
23
+ seed: 42
24
+ deterministic: true
25
+ single_cls: false
26
+ rect: false
27
+ cos_lr: false
28
+ close_mosaic: 10
29
+ resume: false
30
+ amp: true
31
+ fraction: 1.0
32
+ profile: false
33
+ freeze: null
34
+ multi_scale: false
35
+ overlap_mask: true
36
+ mask_ratio: 4
37
+ dropout: 0.0
38
+ val: true
39
+ split: val
40
+ save_json: false
41
+ save_hybrid: false
42
+ conf: null
43
+ iou: 0.7
44
+ max_det: 300
45
+ half: false
46
+ dnn: false
47
+ plots: true
48
+ source: null
49
+ vid_stride: 1
50
+ stream_buffer: false
51
+ visualize: false
52
+ augment: false
53
+ agnostic_nms: false
54
+ classes: null
55
+ retina_masks: false
56
+ embed: null
57
+ show: false
58
+ save_frames: false
59
+ save_txt: false
60
+ save_conf: false
61
+ save_crop: false
62
+ show_labels: true
63
+ show_conf: true
64
+ show_boxes: true
65
+ line_width: null
66
+ format: torchscript
67
+ keras: false
68
+ optimize: false
69
+ int8: false
70
+ dynamic: false
71
+ simplify: false
72
+ opset: null
73
+ workspace: 4
74
+ nms: false
75
+ lr0: 0.01
76
+ lrf: 0.01
77
+ momentum: 0.937
78
+ weight_decay: 0.0005
79
+ warmup_epochs: 3.0
80
+ warmup_momentum: 0.8
81
+ warmup_bias_lr: 0.1
82
+ box: 7.5
83
+ cls: 0.5
84
+ dfl: 1.5
85
+ pose: 12.0
86
+ kobj: 1.0
87
+ label_smoothing: 0.0
88
+ nbs: 64
89
+ hsv_h: 0.015
90
+ hsv_s: 0.7
91
+ hsv_v: 0.4
92
+ degrees: 0.0
93
+ translate: 0.1
94
+ scale: 0.5
95
+ shear: 0.0
96
+ perspective: 0.0
97
+ flipud: 0.0
98
+ fliplr: 0.5
99
+ bgr: 0.0
100
+ mosaic: 1.0
101
+ mixup: 0.0
102
+ copy_paste: 0.0
103
+ auto_augment: randaugment
104
+ erasing: 0.4
105
+ crop_fraction: 1.0
106
+ cfg: null
107
+ tracker: botsort.yaml
108
+ save_dir: runs/detect/train2
train-v5/confusion_matrix.png ADDED
train-v5/confusion_matrix_normalized.png ADDED
train-v5/events.out.tfevents.1726997611.23ab2bea4ad1.255.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d5869e6388f6c7b5f600e6691fcb5df9dba5c2af47adb3b931ad92998197749
3
+ size 228946
train-v5/labels_correlogram (2).jpg ADDED
train-v5/results.csv ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 1.6511, 2.5289, 1.6398, 0.56088, 0.5153, 0.51262, 0.26069, 1.7624, 1.7547, 1.8632, 0.003325, 0.003325, 0.003325
3
+ 2, 1.5567, 1.6458, 1.5219, 0.55779, 0.47127, 0.48553, 0.24889, 1.7799, 1.7868, 1.8292, 0.0065569, 0.0065569, 0.0065569
4
+ 3, 1.6308, 1.7882, 1.5888, 0.47467, 0.36081, 0.35255, 0.15667, 2.0672, 2.2539, 2.1588, 0.0096873, 0.0096873, 0.0096873
5
+ 4, 1.7175, 1.9333, 1.672, 0.49607, 0.3998, 0.38959, 0.18403, 1.9286, 2.1708, 1.997, 0.0095431, 0.0095431, 0.0095431
6
+ 5, 1.6473, 1.8256, 1.6282, 0.56307, 0.47789, 0.51821, 0.25823, 1.8113, 1.7876, 1.878, 0.0093908, 0.0093908, 0.0093908
7
+ 6, 1.6148, 1.7357, 1.6032, 0.6035, 0.4962, 0.54385, 0.27981, 1.7579, 1.7232, 1.8027, 0.0092385, 0.0092385, 0.0092385
8
+ 7, 1.5849, 1.6943, 1.5866, 0.63153, 0.51555, 0.56518, 0.30176, 1.7036, 1.6421, 1.7962, 0.0090862, 0.0090862, 0.0090862
9
+ 8, 1.5541, 1.6239, 1.5501, 0.61429, 0.52384, 0.54998, 0.28993, 1.6532, 1.6507, 1.7552, 0.0089338, 0.0089338, 0.0089338
10
+ 9, 1.5371, 1.5556, 1.5277, 0.67079, 0.56676, 0.62448, 0.34205, 1.6413, 1.4679, 1.7076, 0.0087815, 0.0087815, 0.0087815
11
+ 10, 1.5095, 1.5385, 1.5167, 0.64764, 0.54373, 0.60182, 0.32415, 1.6486, 1.4807, 1.7533, 0.0086292, 0.0086292, 0.0086292
12
+ 11, 1.4948, 1.4868, 1.5024, 0.67457, 0.58076, 0.6486, 0.35425, 1.6322, 1.4125, 1.6857, 0.0084769, 0.0084769, 0.0084769
13
+ 12, 1.472, 1.4661, 1.4951, 0.69095, 0.57965, 0.6505, 0.36792, 1.5762, 1.4189, 1.6646, 0.0083246, 0.0083246, 0.0083246
14
+ 13, 1.4484, 1.4181, 1.4743, 0.7009, 0.60561, 0.67922, 0.3942, 1.5397, 1.3409, 1.6205, 0.0081723, 0.0081723, 0.0081723
15
+ 14, 1.4354, 1.3834, 1.454, 0.73382, 0.59934, 0.67443, 0.39202, 1.5348, 1.3842, 1.5962, 0.00802, 0.00802, 0.00802
16
+ 15, 1.4223, 1.374, 1.45, 0.74342, 0.61228, 0.69585, 0.40064, 1.5455, 1.3015, 1.61, 0.0078677, 0.0078677, 0.0078677
17
+ 16, 1.4089, 1.3475, 1.4466, 0.732, 0.61818, 0.69671, 0.41274, 1.4909, 1.2789, 1.574, 0.0077154, 0.0077154, 0.0077154
18
+ 17, 1.3925, 1.328, 1.4327, 0.75273, 0.6453, 0.71884, 0.42032, 1.4999, 1.2599, 1.5654, 0.0075631, 0.0075631, 0.0075631
19
+ 18, 1.3911, 1.3046, 1.4316, 0.74913, 0.62715, 0.71765, 0.42679, 1.4786, 1.2237, 1.5453, 0.0074108, 0.0074108, 0.0074108
20
+ 19, 1.3788, 1.2754, 1.4166, 0.75845, 0.64496, 0.72841, 0.43235, 1.4675, 1.1912, 1.5493, 0.0072585, 0.0072585, 0.0072585
21
+ 20, 1.3637, 1.256, 1.4035, 0.76223, 0.64445, 0.73301, 0.44172, 1.4552, 1.1941, 1.531, 0.0071062, 0.0071062, 0.0071062
22
+ 21, 1.3464, 1.2458, 1.3965, 0.77305, 0.64394, 0.7394, 0.44401, 1.4523, 1.175, 1.5365, 0.0069538, 0.0069538, 0.0069538
23
+ 22, 1.345, 1.2219, 1.3815, 0.75893, 0.65898, 0.74054, 0.44475, 1.4447, 1.1624, 1.5449, 0.0068015, 0.0068015, 0.0068015
24
+ 23, 1.3319, 1.1989, 1.3768, 0.77702, 0.66389, 0.75171, 0.45899, 1.4387, 1.1394, 1.5022, 0.0066492, 0.0066492, 0.0066492
25
+ 24, 1.3212, 1.1897, 1.3728, 0.77186, 0.6793, 0.76135, 0.46561, 1.4151, 1.124, 1.4946, 0.0064969, 0.0064969, 0.0064969
26
+ 25, 1.3187, 1.1826, 1.3745, 0.79282, 0.67678, 0.76396, 0.47091, 1.3981, 1.1074, 1.4845, 0.0063446, 0.0063446, 0.0063446
27
+ 26, 1.3049, 1.1698, 1.3668, 0.80206, 0.67861, 0.76569, 0.47389, 1.4002, 1.1181, 1.4803, 0.0061923, 0.0061923, 0.0061923
28
+ 27, 1.3054, 1.149, 1.354, 0.79712, 0.68356, 0.77329, 0.47712, 1.3882, 1.0685, 1.4768, 0.00604, 0.00604, 0.00604
29
+ 28, 1.2895, 1.1289, 1.3488, 0.79629, 0.69117, 0.78074, 0.48263, 1.3953, 1.0556, 1.4832, 0.0058877, 0.0058877, 0.0058877
30
+ 29, 1.2785, 1.1251, 1.3408, 0.80064, 0.69564, 0.78013, 0.48088, 1.3777, 1.066, 1.4712, 0.0057354, 0.0057354, 0.0057354
31
+ 30, 1.2817, 1.1022, 1.3374, 0.80353, 0.70355, 0.78563, 0.49125, 1.374, 1.0467, 1.4569, 0.0055831, 0.0055831, 0.0055831
32
+ 31, 1.2586, 1.0727, 1.3294, 0.81137, 0.70917, 0.79632, 0.49988, 1.3649, 1.0205, 1.4492, 0.0054308, 0.0054308, 0.0054308
33
+ 32, 1.2639, 1.0791, 1.3233, 0.79519, 0.70835, 0.79311, 0.49793, 1.3522, 1.0314, 1.4427, 0.0052785, 0.0052785, 0.0052785
34
+ 33, 1.2594, 1.0683, 1.3186, 0.82636, 0.70934, 0.80379, 0.50793, 1.3485, 1.0009, 1.4435, 0.0051262, 0.0051262, 0.0051262
35
+ 34, 1.2542, 1.047, 1.3205, 0.82678, 0.71079, 0.80308, 0.50855, 1.3397, 0.9894, 1.4404, 0.0049738, 0.0049738, 0.0049738
36
+ 35, 1.2439, 1.0473, 1.3114, 0.82242, 0.71315, 0.80769, 0.51338, 1.3343, 0.97583, 1.4321, 0.0048215, 0.0048215, 0.0048215
37
+ 36, 1.2261, 1.0211, 1.2999, 0.82037, 0.71717, 0.80907, 0.51498, 1.327, 0.96576, 1.4318, 0.0046692, 0.0046692, 0.0046692
38
+ 37, 1.2062, 1.0099, 1.2999, 0.82735, 0.72045, 0.81006, 0.51642, 1.3273, 0.96257, 1.4246, 0.0045169, 0.0045169, 0.0045169
39
+ 38, 1.2015, 0.99731, 1.2866, 0.82661, 0.73012, 0.81648, 0.52127, 1.3166, 0.94811, 1.4187, 0.0043646, 0.0043646, 0.0043646
40
+ 39, 1.2137, 0.99449, 1.2788, 0.82429, 0.73743, 0.82222, 0.52887, 1.3003, 0.93126, 1.4037, 0.0042123, 0.0042123, 0.0042123
41
+ 40, 1.1844, 0.97911, 1.2767, 0.82133, 0.7405, 0.82298, 0.52971, 1.2975, 0.93175, 1.3964, 0.00406, 0.00406, 0.00406
42
+ 41, 1.1869, 0.97208, 1.2818, 0.84223, 0.73016, 0.82599, 0.53281, 1.2949, 0.92392, 1.396, 0.0039077, 0.0039077, 0.0039077
43
+ 42, 1.1872, 0.95927, 1.2743, 0.83883, 0.74414, 0.83029, 0.53695, 1.289, 0.90717, 1.394, 0.0037554, 0.0037554, 0.0037554
44
+ 43, 1.1815, 0.94699, 1.2701, 0.84492, 0.74001, 0.8284, 0.53593, 1.2864, 0.90886, 1.39, 0.0036031, 0.0036031, 0.0036031
45
+ 44, 1.1589, 0.92858, 1.2564, 0.84571, 0.73456, 0.82955, 0.53898, 1.2793, 0.90384, 1.3823, 0.0034508, 0.0034508, 0.0034508
46
+ 45, 1.1492, 0.92122, 1.2513, 0.84847, 0.7368, 0.83189, 0.54314, 1.2753, 0.89297, 1.3814, 0.0032985, 0.0032985, 0.0032985
47
+ 46, 1.1506, 0.90468, 1.2464, 0.84197, 0.75342, 0.83646, 0.54507, 1.2725, 0.88154, 1.3836, 0.0031462, 0.0031462, 0.0031462
48
+ 47, 1.1429, 0.90658, 1.2486, 0.85857, 0.74271, 0.8388, 0.54718, 1.2683, 0.87644, 1.3814, 0.0029938, 0.0029938, 0.0029938
49
+ 48, 1.1264, 0.87122, 1.2289, 0.85149, 0.74769, 0.83953, 0.55199, 1.2638, 0.86637, 1.3716, 0.0028415, 0.0028415, 0.0028415
50
+ 49, 1.1023, 0.86316, 1.2252, 0.86211, 0.74392, 0.84163, 0.55327, 1.2608, 0.865, 1.3685, 0.0026892, 0.0026892, 0.0026892
51
+ 50, 1.127, 0.86051, 1.2364, 0.85505, 0.7558, 0.84264, 0.55559, 1.2584, 0.8599, 1.3664, 0.0025369, 0.0025369, 0.0025369
52
+ 51, 1.1122, 0.86552, 1.2259, 0.86042, 0.75203, 0.84481, 0.55745, 1.252, 0.85614, 1.3637, 0.0023846, 0.0023846, 0.0023846
53
+ 52, 1.0954, 0.83554, 1.2197, 0.86134, 0.75816, 0.84481, 0.55735, 1.2483, 0.85225, 1.3663, 0.0022323, 0.0022323, 0.0022323
54
+ 53, 1.074, 0.82932, 1.2106, 0.863, 0.75913, 0.8464, 0.55971, 1.2442, 0.84815, 1.3654, 0.00208, 0.00208, 0.00208
55
+ 54, 1.0809, 0.81372, 1.2025, 0.87032, 0.75102, 0.84686, 0.5608, 1.2416, 0.8465, 1.3624, 0.0019277, 0.0019277, 0.0019277
56
+ 55, 1.0718, 0.80649, 1.2036, 0.86175, 0.75504, 0.84757, 0.5624, 1.2389, 0.84658, 1.3602, 0.0017754, 0.0017754, 0.0017754
57
+ 56, 1.0437, 0.70478, 1.1815, 0.85973, 0.76402, 0.85033, 0.5646, 1.2341, 0.83973, 1.3594, 0.0016231, 0.0016231, 0.0016231
58
+ 57, 1.0186, 0.67592, 1.1662, 0.8627, 0.76176, 0.85051, 0.56818, 1.2263, 0.83352, 1.3547, 0.0014708, 0.0014708, 0.0014708
59
+ 58, 0.99966, 0.65825, 1.148, 0.86706, 0.76087, 0.85133, 0.56924, 1.2235, 0.82667, 1.356, 0.0013185, 0.0013185, 0.0013185
60
+ 59, 1.0028, 0.63989, 1.143, 0.86552, 0.76349, 0.85187, 0.57082, 1.217, 0.82166, 1.354, 0.0011662, 0.0011662, 0.0011662
61
+ 60, 0.98149, 0.6317, 1.1414, 0.85777, 0.76752, 0.85171, 0.57216, 1.2127, 0.82122, 1.3526, 0.0010138, 0.0010138, 0.0010138
62
+ 61, 0.96714, 0.62436, 1.1297, 0.86715, 0.76511, 0.85412, 0.57389, 1.2076, 0.81466, 1.3516, 0.00086154, 0.00086154, 0.00086154
63
+ 62, 0.95772, 0.61171, 1.1274, 0.86653, 0.7685, 0.85507, 0.57556, 1.2041, 0.8113, 1.3498, 0.00070923, 0.00070923, 0.00070923
64
+ 63, 0.94853, 0.59583, 1.1124, 0.86489, 0.7686, 0.85609, 0.5759, 1.2037, 0.80838, 1.3501, 0.00055692, 0.00055692, 0.00055692
65
+ 64, 0.94115, 0.58868, 1.1148, 0.86499, 0.77044, 0.85685, 0.57747, 1.2028, 0.80431, 1.3494, 0.00040462, 0.00040462, 0.00040462
66
+ 65, 0.93594, 0.58896, 1.1155, 0.86782, 0.76993, 0.85751, 0.57842, 1.2027, 0.80183, 1.3495, 0.00025231, 0.00025231, 0.00025231
train-v5/results.png ADDED
train-v5/train_batch0.jpg ADDED
train-v5/train_batch1.jpg ADDED
train-v5/train_batch2 (2).jpg ADDED
train-v5/train_batch22055.jpg ADDED
train-v5/train_batch22056.jpg ADDED
train-v5/train_batch22057.jpg ADDED
train-v5/val_batch0_labels.jpg ADDED
train-v5/val_batch0_pred (1).jpg ADDED
train-v5/val_batch1_labels.jpg ADDED
train-v5/val_batch2_labels.jpg ADDED
train-v5/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86f332357698d655a3a13546aea429a0437d14617ce6b8fefc7301023762b5c4
3
+ size 22522083
train-v5/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54abb72cd493082bb61fd66a37b7880db7c289fd322f763d8a52baa5ba179b28
3
+ size 22522083