Mahadih534 commited on
Commit
5c37aa4
·
verified ·
1 Parent(s): f51c629

Upload 22 files

Browse files
train-v1/F1_curve.png ADDED
train-v1/PR_curve.png ADDED
train-v1/P_curve.png ADDED
train-v1/R_curve.png ADDED
train-v1/args.yaml ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ task: obb
2
+ mode: train
3
+ model: yolov8s-obb.pt
4
+ data: /opt/conda/lib/python3.10/site-packages/ultralytics/cfg/datasets/dota8.yaml
5
+ epochs: 100
6
+ time: null
7
+ patience: 100
8
+ batch: 32
9
+ imgsz: 640
10
+ save: true
11
+ save_period: -1
12
+ cache: false
13
+ device:
14
+ - 0
15
+ - 1
16
+ workers: 16
17
+ project: null
18
+ name: train
19
+ exist_ok: false
20
+ pretrained: true
21
+ optimizer: auto
22
+ verbose: true
23
+ seed: 42
24
+ deterministic: true
25
+ single_cls: false
26
+ rect: false
27
+ cos_lr: false
28
+ close_mosaic: 10
29
+ resume: false
30
+ amp: true
31
+ fraction: 1.0
32
+ profile: false
33
+ freeze: null
34
+ multi_scale: false
35
+ overlap_mask: true
36
+ mask_ratio: 4
37
+ dropout: 0.0
38
+ val: true
39
+ split: val
40
+ save_json: false
41
+ save_hybrid: false
42
+ conf: null
43
+ iou: 0.7
44
+ max_det: 300
45
+ half: false
46
+ dnn: false
47
+ plots: true
48
+ source: null
49
+ vid_stride: 1
50
+ stream_buffer: false
51
+ visualize: false
52
+ augment: false
53
+ agnostic_nms: false
54
+ classes: null
55
+ retina_masks: false
56
+ embed: null
57
+ show: false
58
+ save_frames: false
59
+ save_txt: false
60
+ save_conf: false
61
+ save_crop: false
62
+ show_labels: true
63
+ show_conf: true
64
+ show_boxes: true
65
+ line_width: null
66
+ format: torchscript
67
+ keras: false
68
+ optimize: false
69
+ int8: false
70
+ dynamic: false
71
+ simplify: true
72
+ opset: null
73
+ workspace: 4
74
+ nms: false
75
+ lr0: 0.01
76
+ lrf: 0.01
77
+ momentum: 0.937
78
+ weight_decay: 0.0005
79
+ warmup_epochs: 3.0
80
+ warmup_momentum: 0.8
81
+ warmup_bias_lr: 0.1
82
+ box: 7.5
83
+ cls: 0.5
84
+ dfl: 1.5
85
+ pose: 12.0
86
+ kobj: 1.0
87
+ label_smoothing: 0.0
88
+ nbs: 64
89
+ hsv_h: 0.015
90
+ hsv_s: 0.7
91
+ hsv_v: 0.4
92
+ degrees: 0.0
93
+ translate: 0.1
94
+ scale: 0.5
95
+ shear: 0.0
96
+ perspective: 0.0
97
+ flipud: 0.0
98
+ fliplr: 0.5
99
+ bgr: 0.0
100
+ mosaic: 1.0
101
+ mixup: 0.0
102
+ copy_paste: 0.0
103
+ copy_paste_mode: flip
104
+ auto_augment: randaugment
105
+ erasing: 0.4
106
+ crop_fraction: 1.0
107
+ cfg: null
108
+ tracker: botsort.yaml
109
+ save_dir: runs/obb/train
train-v1/confusion_matrix.png ADDED
train-v1/confusion_matrix_normalized.png ADDED
train-v1/events.out.tfevents.1727939194.0c30dad15f51.93.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8d576830361dd0d0b699fd1bc9a0946068a695422fd557de5c4ee87ebfb4b55
3
+ size 275342
train-v1/labels.jpg ADDED
train-v1/labels_correlogram.jpg ADDED
train-v1/results.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
2
+ 1, 1.9371, 5.4822, 1.5856, 0, 0, 0, 0, 0.6096, 4.4185, 1.3397, 0, 0, 0
3
+ 2, 1.0918, 5.5125, 1.2627, 0, 0, 0, 0, 0.61123, 4.4188, 1.3336, 7.0693e-06, 7.0693e-06, 7.0693e-06
4
+ 3, 1.28, 5.9668, 1.213, 0, 0, 0, 0, 0.60045, 4.4309, 1.3342, 1.3997e-05, 1.3997e-05, 1.3997e-05
5
+ 4, 1.4446, 5.3258, 1.5162, 0, 0, 0, 0, 0.59769, 4.4314, 1.3274, 2.0784e-05, 2.0784e-05, 2.0784e-05
6
+ 5, 1.323, 5.7224, 1.525, 0, 0, 0, 0, 0.59318, 4.4255, 1.3412, 2.7429e-05, 2.7429e-05, 2.7429e-05
7
+ 6, 0.84641, 5.9268, 1.1927, 0, 0, 0, 0, 0.59303, 4.43, 1.3273, 3.3933e-05, 3.3933e-05, 3.3933e-05
8
+ 7, 1.6462, 5.396, 1.2974, 0, 0, 0, 0, 0.58735, 4.4306, 1.3301, 4.0295e-05, 4.0295e-05, 4.0295e-05
9
+ 8, 1.0818, 5.4421, 1.8967, 0, 0, 0, 0, 0.59388, 4.4285, 1.3246, 4.6516e-05, 4.6516e-05, 4.6516e-05
10
+ 9, 1.1875, 5.8695, 1.4828, 0, 0, 0, 0, 0.58322, 4.4289, 1.3317, 5.2596e-05, 5.2596e-05, 5.2596e-05
11
+ 10, 1.1339, 5.1997, 2.017, 0, 0, 0, 0, 0.5773, 4.4305, 1.3312, 5.8534e-05, 5.8534e-05, 5.8534e-05
12
+ 11, 1.1019, 5.2016, 1.9295, 0, 0, 0, 0, 0.58576, 4.4291, 1.3345, 6.4331e-05, 6.4331e-05, 6.4331e-05
13
+ 12, 1.2039, 5.112, 1.4187, 0, 0, 0, 0, 0.59884, 4.426, 1.3661, 6.9987e-05, 6.9987e-05, 6.9987e-05
14
+ 13, 0.93501, 5.3407, 1.2059, 0, 0, 0, 0, 0.60102, 4.4242, 1.376, 7.5501e-05, 7.5501e-05, 7.5501e-05
15
+ 14, 0.99984, 4.9424, 1.7481, 0, 0, 0, 0, 0.604, 4.4204, 1.4011, 8.0874e-05, 8.0874e-05, 8.0874e-05
16
+ 15, 0.56343, 4.7601, 1.2252, 0, 0, 0, 0, 0.61481, 4.4256, 1.3984, 8.6106e-05, 8.6106e-05, 8.6106e-05
17
+ 16, 1.2092, 5.3076, 1.4878, 0, 0, 0, 0, 0.61558, 4.4326, 1.3984, 9.1196e-05, 9.1196e-05, 9.1196e-05
18
+ 17, 0.74554, 5.3813, 1.4725, 0, 0, 0, 0, 0.62448, 4.4302, 1.3996, 9.6144e-05, 9.6144e-05, 9.6144e-05
19
+ 18, 0.62091, 4.9868, 1.2827, 0, 0, 0, 0, 0.62541, 4.4317, 1.4162, 0.00010095, 0.00010095, 0.00010095
20
+ 19, 1.1029, 4.9585, 1.634, 0, 0, 0, 0, 0.6262, 4.4501, 1.4187, 0.00010562, 0.00010562, 0.00010562
21
+ 20, 1.0567, 4.4954, 2.1528, 0, 0, 0, 0, 0.63449, 4.4441, 1.4176, 0.00011014, 0.00011014, 0.00011014
22
+ 21, 0.99971, 4.3917, 1.2582, 0, 0, 0, 0, 0.62248, 4.4509, 1.4156, 0.00011453, 0.00011453, 0.00011453
23
+ 22, 1.4189, 4.2809, 1.2863, 0, 0, 0, 0, 0.62239, 4.4556, 1.4196, 0.00011877, 0.00011877, 0.00011877
24
+ 23, 1.1773, 4.1219, 1.6193, 0, 0, 0, 0, 0.62444, 4.459, 1.4022, 0.00012287, 0.00012287, 0.00012287
25
+ 24, 1.1835, 4.0819, 1.6085, 0, 0, 0, 0, 0.62788, 4.4558, 1.4171, 0.00012683, 0.00012683, 0.00012683
26
+ 25, 1.0057, 4.0691, 1.442, 0, 0, 0, 0, 0.62713, 4.4635, 1.4246, 0.00013064, 0.00013064, 0.00013064
27
+ 26, 0.91728, 4.1129, 1.389, 0, 0, 0, 0, 0.63463, 4.4582, 1.4277, 0.00013432, 0.00013432, 0.00013432
28
+ 27, 1.1708, 3.8488, 1.5143, 0, 0, 0, 0, 0.62967, 4.4597, 1.4316, 0.00013786, 0.00013786, 0.00013786
29
+ 28, 0.70989, 4.2745, 1.4559, 0, 0, 0, 0, 0.63995, 4.4532, 1.4515, 0.00014125, 0.00014125, 0.00014125
30
+ 29, 1.3619, 4.1827, 1.4965, 0, 0, 0, 0, 0.63776, 4.4554, 1.4489, 0.0001445, 0.0001445, 0.0001445
31
+ 30, 1.1156, 3.6929, 1.7537, 0, 0, 0, 0, 0.66107, 4.4524, 1.4635, 0.00014761, 0.00014761, 0.00014761
32
+ 31, 0.64132, 4.2313, 1.4215, 0, 0, 0, 0, 0.72044, 4.4477, 1.4741, 0.00015058, 0.00015058, 0.00015058
33
+ 32, 0.93578, 3.5977, 1.8066, 0, 0, 0, 0, 0.73391, 4.4346, 1.4825, 0.00015341, 0.00015341, 0.00015341
34
+ 33, 1.1019, 3.8091, 1.2542, 0, 0, 0, 0, 0.74412, 4.4364, 1.5038, 0.0001561, 0.0001561, 0.0001561
35
+ 34, 0.84539, 3.4436, 1.0689, 0, 0, 0, 0, 0.74807, 4.4378, 1.497, 0.00015864, 0.00015864, 0.00015864
36
+ 35, 0.91252, 3.2498, 1.6328, 0, 0, 0, 0, 0.75948, 4.4437, 1.4959, 0.00016105, 0.00016105, 0.00016105
37
+ 36, 1.8134, 3.8593, 2.6437, 0, 0, 0, 0, 0.77561, 4.437, 1.4952, 0.00016331, 0.00016331, 0.00016331
38
+ 37, 0.84347, 3.5063, 2.0216, 0, 0, 0, 0, 0.78959, 4.4256, 1.4934, 0.00016543, 0.00016543, 0.00016543
39
+ 38, 1.2059, 3.2259, 1.4299, 0, 0, 0, 0, 0.77798, 4.4162, 1.4938, 0.00016741, 0.00016741, 0.00016741
40
+ 39, 0.98883, 3.2292, 2.0503, 0, 0, 0, 0, 0.76268, 4.4108, 1.5055, 0.00016925, 0.00016925, 0.00016925
41
+ 40, 0.85596, 3.5144, 1.4032, 0, 0, 0, 0, 0.76868, 4.4041, 1.5219, 0.00017095, 0.00017095, 0.00017095
42
+ 41, 1.0008, 2.7508, 1.609, 0, 0, 0, 0, 0.75267, 4.39, 1.5238, 0.0001725, 0.0001725, 0.0001725
43
+ 42, 0.93227, 2.8545, 1.7097, 0, 0, 0, 0, 0.75255, 4.3755, 1.5329, 0.00017392, 0.00017392, 0.00017392
44
+ 43, 0.87062, 2.9192, 1.3736, 0, 0, 0, 0, 0.74059, 4.382, 1.5275, 0.00017519, 0.00017519, 0.00017519
45
+ 44, 0.62348, 3.0319, 1.6643, 0, 0, 0, 0, 0.75048, 4.3778, 1.5212, 0.00017632, 0.00017632, 0.00017632
46
+ 45, 1.0943, 3.714, 1.6488, 0, 0, 0, 0, 0.76142, 4.3807, 1.5111, 0.00017731, 0.00017731, 0.00017731
47
+ 46, 1.0184, 2.4912, 1.1645, 0, 0, 0, 0, 0.77397, 4.3942, 1.4981, 0.00017816, 0.00017816, 0.00017816
48
+ 47, 0.86511, 3.1191, 1.5055, 0, 0, 0, 0, 0.78181, 4.4017, 1.4931, 0.00017887, 0.00017887, 0.00017887
49
+ 48, 0.99275, 2.1952, 1.6829, 0, 0, 0, 0, 0.77224, 4.4213, 1.4693, 0.00017943, 0.00017943, 0.00017943
50
+ 49, 0.99244, 2.2928, 1.2764, 0, 0, 0, 0, 0.81467, 4.3883, 1.527, 0.00017986, 0.00017986, 0.00017986
51
+ 50, 0.95475, 1.6466, 1.6346, 0, 0, 0, 0, 0.86053, 4.3532, 1.5764, 0.00018014, 0.00018014, 0.00018014
52
+ 51, 1.1038, 1.964, 1.5556, 0, 0, 0, 0, 0.86053, 4.3532, 1.5764, 0.00018028, 0.00018028, 0.00018028
53
+ 52, 0.93106, 1.9387, 1.4589, 0, 0, 0, 0, 0.84523, 4.3657, 1.5789, 0.00018029, 0.00018029, 0.00018029
54
+ 53, 0.856, 1.5944, 1.2103, 0, 0, 0, 0, 0.84523, 4.3657, 1.5789, 0.00018015, 0.00018015, 0.00018015
55
+ 54, 0.89147, 2.3165, 1.6776, 0, 0, 0, 0, 0.85971, 4.3414, 1.603, 0.00017986, 0.00017986, 0.00017986
56
+ 55, 0.74464, 2.8799, 1.2972, 0, 0, 0, 0, 0.85971, 4.3414, 1.603, 0.00017944, 0.00017944, 0.00017944
57
+ 56, 1.0111, 1.6111, 1.4149, 0, 0, 0, 0, 0.87764, 4.3188, 1.6072, 0.00017887, 0.00017887, 0.00017887
58
+ 57, 0.89807, 2.1541, 1.4189, 0, 0, 0, 0, 0.87764, 4.3188, 1.6072, 0.00017817, 0.00017817, 0.00017817
59
+ 58, 0.91826, 1.7801, 1.4295, 0, 0, 0, 0, 0.92343, 4.2986, 1.5956, 0.00017732, 0.00017732, 0.00017732
60
+ 59, 1.1303, 1.9554, 1.6349, 0, 0, 0, 0, 0.92343, 4.2986, 1.5956, 0.00017633, 0.00017633, 0.00017633
61
+ 60, 0.79234, 2.0986, 1.1406, 0, 0, 0, 0, 0.94124, 4.2925, 1.5863, 0.0001752, 0.0001752, 0.0001752
62
+ 61, 0.6392, 2.7829, 1.4924, 0, 0, 0, 0, 0.94124, 4.2925, 1.5863, 0.00017393, 0.00017393, 0.00017393
63
+ 62, 0.99579, 1.6707, 1.5865, 0.33333, 0.11111, 0.22222, 0.17777, 0.97114, 4.2894, 1.5881, 0.00017252, 0.00017252, 0.00017252
64
+ 63, 0.78802, 2.9204, 1.5541, 0.33333, 0.11111, 0.22222, 0.17777, 0.97114, 4.2894, 1.5881, 0.00017096, 0.00017096, 0.00017096
65
+ 64, 0.93819, 2.3589, 1.4424, 0.33333, 0.33333, 0.33167, 0.2746, 0.99228, 4.2713, 1.6014, 0.00016927, 0.00016927, 0.00016927
66
+ 65, 0.85676, 2.7978, 1.5046, 0.33333, 0.33333, 0.33167, 0.2746, 0.99228, 4.2713, 1.6014, 0.00016743, 0.00016743, 0.00016743
67
+ 66, 0.7237, 2.843, 1.4457, 0.33333, 0.33333, 0.33167, 0.28385, 1.0134, 4.2616, 1.6142, 0.00016545, 0.00016545, 0.00016545
68
+ 67, 0.6095, 2.4592, 1.1793, 0.33333, 0.33333, 0.33167, 0.28385, 1.0134, 4.2616, 1.6142, 0.00016333, 0.00016333, 0.00016333
69
+ 68, 0.96159, 1.9286, 1.6123, 0.33333, 0.33333, 0.33167, 0.2985, 0.99968, 4.2549, 1.6091, 0.00016107, 0.00016107, 0.00016107
70
+ 69, 0.50476, 2.4994, 1.0056, 0.33333, 0.33333, 0.33167, 0.2985, 0.99968, 4.2549, 1.6091, 0.00015867, 0.00015867, 0.00015867
71
+ 70, 0.98407, 1.4497, 1.367, 0.33333, 0.33333, 0.33167, 0.2985, 0.97197, 4.2422, 1.5888, 0.00015612, 0.00015612, 0.00015612
72
+ 71, 0.88926, 1.4476, 1.4651, 0.33333, 0.33333, 0.33167, 0.2985, 0.97197, 4.2422, 1.5888, 0.00015344, 0.00015344, 0.00015344
73
+ 72, 0.63365, 2.5137, 1.7397, 0.33333, 0.33333, 0.33167, 0.2985, 0.96227, 4.2225, 1.574, 0.00015061, 0.00015061, 0.00015061
74
+ 73, 1.2456, 1.6977, 1.3765, 0.33333, 0.33333, 0.33167, 0.2985, 0.96227, 4.2225, 1.574, 0.00014764, 0.00014764, 0.00014764
75
+ 74, 0.6147, 2.4727, 1.1627, 0.33333, 0.33333, 0.33167, 0.30591, 0.93656, 4.2307, 1.5664, 0.00014453, 0.00014453, 0.00014453
76
+ 75, 1.0792, 1.8578, 1.2547, 0.33333, 0.33333, 0.33167, 0.30591, 0.93656, 4.2307, 1.5664, 0.00014128, 0.00014128, 0.00014128
77
+ 76, 0.82627, 1.0721, 1.5261, 0.33333, 0.33333, 0.33167, 0.28757, 0.94145, 4.2119, 1.5616, 0.00013789, 0.00013789, 0.00013789
78
+ 77, 0.77034, 1.2569, 1.5233, 0.33333, 0.33333, 0.33167, 0.28757, 0.94145, 4.2119, 1.5616, 0.00013436, 0.00013436, 0.00013436
79
+ 78, 0.73682, 2.4203, 1.4725, 0.33333, 0.33333, 0.33167, 0.29124, 0.96029, 4.2203, 1.5463, 0.00013068, 0.00013068, 0.00013068
80
+ 79, 0.72919, 2.4714, 1.1651, 0.33333, 0.33333, 0.33167, 0.29124, 0.96029, 4.2203, 1.5463, 0.00012687, 0.00012687, 0.00012687
81
+ 80, 0.92404, 2.0944, 1.1016, 0.33333, 0.33333, 0.33167, 0.29124, 0.96435, 4.2195, 1.5434, 0.00012291, 0.00012291, 0.00012291
82
+ 81, 0.6737, 2.4201, 1.0469, 0.33333, 0.33333, 0.33167, 0.29124, 0.96435, 4.2195, 1.5434, 0.00011881, 0.00011881, 0.00011881
83
+ 82, 0.81295, 2.4266, 1.2519, 0.33333, 0.33333, 0.33167, 0.28757, 0.95992, 4.198, 1.5409, 0.00011457, 0.00011457, 0.00011457
84
+ 83, 0.93353, 1.4744, 1.4787, 0.33333, 0.33333, 0.33167, 0.28757, 0.95992, 4.198, 1.5409, 0.00011019, 0.00011019, 0.00011019
85
+ 84, 0.77733, 1.2069, 1.359, 0.33333, 0.33333, 0.33167, 0.29124, 0.9614, 4.1868, 1.5303, 0.00010566, 0.00010566, 0.00010566
86
+ 85, 0.537, 2.1854, 1.1132, 0.33333, 0.33333, 0.33167, 0.29124, 0.9614, 4.1868, 1.5303, 0.000101, 0.000101, 0.000101
87
+ 86, 0.89207, 1.306, 1.4278, 0.33333, 0.33333, 0.33167, 0.29124, 0.9609, 4.1791, 1.5319, 9.6194e-05, 9.6194e-05, 9.6194e-05
88
+ 87, 1.1278, 1.5631, 1.6268, 0.33333, 0.33333, 0.33167, 0.29124, 0.9609, 4.1791, 1.5319, 9.1246e-05, 9.1246e-05, 9.1246e-05
89
+ 88, 0.89423, 1.1934, 1.2682, 0.33333, 0.33333, 0.33167, 0.27274, 0.96047, 4.1719, 1.5429, 8.6158e-05, 8.6158e-05, 8.6158e-05
90
+ 89, 0.79279, 1.1858, 1.3171, 0.33333, 0.33333, 0.33167, 0.27274, 0.96047, 4.1719, 1.5429, 8.0928e-05, 8.0928e-05, 8.0928e-05
91
+ 90, 0.88971, 1.2936, 1.3713, 0.25, 0.33333, 0.33167, 0.27182, 0.9443, 4.1712, 1.5199, 7.5556e-05, 7.5556e-05, 7.5556e-05
92
+ 91, 0.38342, 2.0782, 0.71686, 0.25, 0.33333, 0.33167, 0.27182, 0.9443, 4.1712, 1.5199, 7.0043e-05, 7.0043e-05, 7.0043e-05
93
+ 92, 0.90025, 3.371, 1.3138, 0.25, 0.33333, 0.33167, 0.27182, 0.93702, 4.1551, 1.5193, 6.4389e-05, 6.4389e-05, 6.4389e-05
94
+ 93, 0.40505, 2.4194, 0.92424, 0.25, 0.33333, 0.33167, 0.27182, 0.93702, 4.1551, 1.5193, 5.8594e-05, 5.8594e-05, 5.8594e-05
95
+ 94, 0.38864, 2.1736, 0.76463, 0.25, 0.33333, 0.33167, 0.27182, 0.93705, 4.1393, 1.521, 5.2657e-05, 5.2657e-05, 5.2657e-05
96
+ 95, 0.56513, 2.521, 1.137, 0.25, 0.33333, 0.33167, 0.27182, 0.93705, 4.1393, 1.521, 4.6579e-05, 4.6579e-05, 4.6579e-05
97
+ 96, 0.94875, 1.2061, 1.2379, 0.2, 0.33333, 0.33167, 0.28236, 0.94382, 4.1368, 1.5246, 4.0359e-05, 4.0359e-05, 4.0359e-05
98
+ 97, 0.90396, 2.6939, 1.788, 0.2, 0.33333, 0.33167, 0.28236, 0.94382, 4.1368, 1.5246, 3.3998e-05, 3.3998e-05, 3.3998e-05
99
+ 98, 0.51437, 1.8355, 1.3005, 0.2, 0.33333, 0.33167, 0.28236, 0.95617, 4.1498, 1.5246, 2.7495e-05, 2.7495e-05, 2.7495e-05
100
+ 99, 0.97043, 2.9099, 2.2593, 0.2, 0.33333, 0.33167, 0.28236, 0.95617, 4.1498, 1.5246, 2.0852e-05, 2.0852e-05, 2.0852e-05
101
+ 100, 1.4045, 3.2643, 1.6, 0.2, 0.33333, 0.33167, 0.28236, 0.96427, 4.1468, 1.5347, 1.4067e-05, 1.4067e-05, 1.4067e-05
train-v1/results.png ADDED
train-v1/train_batch0.jpg ADDED
train-v1/train_batch1.jpg ADDED
train-v1/train_batch2.jpg ADDED
train-v1/train_batch90.jpg ADDED
train-v1/train_batch91.jpg ADDED
train-v1/train_batch92.jpg ADDED
train-v1/val_batch0_labels.jpg ADDED
train-v1/val_batch0_pred.jpg ADDED
train-v1/weights/best.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e29260d58a0297b4143e69214d78ad2592309c57fafb8e07a532eb425c0893ef
3
+ size 20624792
train-v1/weights/last.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c193207e61d6871a6ad78b31648f37f3c92970f8e3f6cccc581bc0396c77fa0
3
+ size 20624792