File size: 1,640 Bytes
5eff329
f1281b4
 
 
1184b49
 
5eff329
 
1184b49
5eff329
 
 
 
 
 
 
 
 
 
 
1184b49
5eff329
52d5d47
 
5eff329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d5d47
5d39405
5eff329
 
 
 
 
 
52d5d47
 
 
5eff329
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: openai/whisper-medium
datasets:
- Marcusxx/CngFSt10_5
language:
- ko
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: CngFSt10_5_sec_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CngFSt10_5_sec_model

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Marcusxx/CngFSt10_5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0061
- Cer: 15.8432

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Cer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.0207        | 3.6765  | 1000 | 0.0354          | 36.5029 |
| 0.0007        | 7.3529  | 2000 | 0.0076          | 15.6500 |
| 0.0003        | 11.0294 | 3000 | 0.0061          | 15.8432 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1