File size: 2,696 Bytes
b209751 9fa6b39 b209751 9fa6b39 b209751 9fa6b39 b209751 9fa6b39 b209751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- ko
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- Marcusxx/gwanju4
model-index:
- name: gwanju4_test__model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gwanju4_test__model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Marcusxx/gwanju4 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5722
- Cer: 275.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:-----:|
| 1.9955 | 50.0 | 50 | 4.8936 | 425.0 |
| 0.3976 | 100.0 | 100 | 2.6194 | 275.0 |
| 0.0001 | 150.0 | 150 | 2.5074 | 275.0 |
| 0.0 | 200.0 | 200 | 2.4715 | 325.0 |
| 0.0 | 250.0 | 250 | 2.4384 | 325.0 |
| 0.0 | 300.0 | 300 | 2.3972 | 275.0 |
| 0.0 | 350.0 | 350 | 2.3937 | 275.0 |
| 0.0 | 400.0 | 400 | 2.4084 | 275.0 |
| 0.0 | 450.0 | 450 | 2.4310 | 275.0 |
| 0.0 | 500.0 | 500 | 2.4561 | 275.0 |
| 0.0 | 550.0 | 550 | 2.4782 | 275.0 |
| 0.0 | 600.0 | 600 | 2.5006 | 275.0 |
| 0.0 | 650.0 | 650 | 2.5150 | 275.0 |
| 0.0 | 700.0 | 700 | 2.5310 | 275.0 |
| 0.0 | 750.0 | 750 | 2.5415 | 275.0 |
| 0.0 | 800.0 | 800 | 2.5517 | 275.0 |
| 0.0 | 850.0 | 850 | 2.5592 | 275.0 |
| 0.0 | 900.0 | 900 | 2.5674 | 275.0 |
| 0.0 | 950.0 | 950 | 2.5723 | 275.0 |
| 0.0 | 1000.0 | 1000 | 2.5722 | 275.0 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.2.2+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
|