File size: 32,354 Bytes
980729c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: Health Care Benefits revenue is principally derived from insurance
    premiums and fees billed to customers.
  sentences:
  - How much was the cumulative impairment and downward adjustments for observable
    price changes for the equity investments without readily determinable fair values
    as of December 31, 2023?
  - What are the revenue sources for the Company’s Health Care Benefits Segment?
  - What types of legal issues are generally categorized under Commitments and Contingencies
    in a Form 10-K?
- source_sentence: Total net sales increased by 7% during the fiscal year ending December
    30, 2023 compared to the previous fiscal year.
  sentences:
  - What was the percentage increase in Data Center revenue for fiscal year 2023 compared
    to the previous year?
  - What was the percentage increase in total net sales during the fiscal year ending
    December 30, 2023 compared to the previous fiscal year?
  - What were the expenses related to the fair value of restricted stock units (RSUs)
    and stock options for the years 2022, 2021, and 2020?
- source_sentence: The laws and regulations of the jurisdictions in which our insurance
    and reinsurance subsidiaries are domiciled require among other things that these
    subsidiaries maintain minimum levels of statutory capital, surplus, and liquidity,
    meet solvency standards, and submit to periodic examinations of their financial
    condition.
  sentences:
  - What statutory requirements must insurance and reinsurance subsidiaries meet in
    their domiciled jurisdictions?
  - What activities has the federal government used the FCA to prosecute?
  - How are self-insurance reserves computed and presented in financial statements?
- source_sentence: Services net sales increased 9% or $7.1 billion during 2023 compared
    to 2022 due to higher net sales across all lines of business.
  sentences:
  - What is the leverage ratio requirement under the company's financial covenant
    as of January 28, 2023?
  - What are the enrollment periods for Medicare Advantage and stand-alone prescription
    drug plans?
  - What was the percentage increase in Services net sales from 2022 to 2023?
- source_sentence: Certain vendors have been impacted by volatility in the supply
    chain financing market.
  sentences:
  - How have certain vendors been impacted in the supply chain financing market?
  - What was the total value of the company's cash commitments as of December 31,
    2023?
  - What are the key components used to define free cash flow in financial evaluations?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6871428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8171428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8485714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9085714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6871428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2723809523809524
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16971428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09085714285714284
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6871428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8171428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8485714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9085714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7960378752604689
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7603769841269836
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7640840138316877
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6828571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8114285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8528571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9085714285714286
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6828571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2704761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17057142857142857
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09085714285714284
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6828571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8114285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8528571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9085714285714286
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7936620196836198
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7572222222222219
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7609298999926937
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.68
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8071428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8485714285714285
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8957142857142857
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.68
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26904761904761904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16971428571428568
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08957142857142855
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.68
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8071428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8485714285714285
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8957142857142857
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7883110340362532
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7539733560090701
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7582685695127231
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6585714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7942857142857143
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.83
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8842857142857142
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6585714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.26476190476190475
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16599999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08842857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6585714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7942857142857143
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.83
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8842857142857142
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7727884715594033
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.737036848072562
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7419081242961935
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6357142857142857
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7628571428571429
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8142857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.87
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6357142857142857
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2542857142857142
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16285714285714287
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.087
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6357142857142857
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7628571428571429
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8142857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.87
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7501277228250628
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7121167800453513
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7171110018302509
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MarekMarik/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Certain vendors have been impacted by volatility in the supply chain financing market.',
    'How have certain vendors been impacted in the supply chain financing market?',
    "What was the total value of the company's cash commitments as of December 31, 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768   | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.6871    | 0.6829     | 0.68       | 0.6586     | 0.6357     |
| cosine_accuracy@3   | 0.8171    | 0.8114     | 0.8071     | 0.7943     | 0.7629     |
| cosine_accuracy@5   | 0.8486    | 0.8529     | 0.8486     | 0.83       | 0.8143     |
| cosine_accuracy@10  | 0.9086    | 0.9086     | 0.8957     | 0.8843     | 0.87       |
| cosine_precision@1  | 0.6871    | 0.6829     | 0.68       | 0.6586     | 0.6357     |
| cosine_precision@3  | 0.2724    | 0.2705     | 0.269      | 0.2648     | 0.2543     |
| cosine_precision@5  | 0.1697    | 0.1706     | 0.1697     | 0.166      | 0.1629     |
| cosine_precision@10 | 0.0909    | 0.0909     | 0.0896     | 0.0884     | 0.087      |
| cosine_recall@1     | 0.6871    | 0.6829     | 0.68       | 0.6586     | 0.6357     |
| cosine_recall@3     | 0.8171    | 0.8114     | 0.8071     | 0.7943     | 0.7629     |
| cosine_recall@5     | 0.8486    | 0.8529     | 0.8486     | 0.83       | 0.8143     |
| cosine_recall@10    | 0.9086    | 0.9086     | 0.8957     | 0.8843     | 0.87       |
| **cosine_ndcg@10**  | **0.796** | **0.7937** | **0.7883** | **0.7728** | **0.7501** |
| cosine_mrr@10       | 0.7604    | 0.7572     | 0.754      | 0.737      | 0.7121     |
| cosine_map@100      | 0.7641    | 0.7609     | 0.7583     | 0.7419     | 0.7171     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 45.84 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.62 tokens</li><li>max: 42 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                          | anchor                                                                                                                                       |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>We adopted SAB 121 during fiscal 2022, with no impact on our consolidated financial statements.</code>                                                                                                                                      | <code>What accounting guidance did the company adopt in fiscal 2022 and what was its impact on the consolidated financial statements?</code> |
  | <code>Mortgage Solutions revenue decreased 18% in 2023 compared to 2022, due to significantly lower mortgage credit inquiry volumes in 2023 compared to the prior year.</code>                                                                    | <code>What caused the 18% decline in Mortgage Solutions revenue in 2023 compared to 2022?</code>                                             |
  | <code>Adoption of SBTi goals would build on our current science-based goals to reduce Scope 1 and 2 carbon emissions by 2.1% per year, to achieve a 40% reduction by the end of fiscal 2030 and a 50% reduction by the end of fiscal 2035.</code> | <code>What is the company's percentage target for reducing Scope 1 and 2 carbon emissions by end of fiscal 2035?</code>                      |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 4
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 4
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step    | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.1015  | 10      | 0.614         | -                      | -                      | -                      | -                      | -                     |
| 0.2030  | 20      | 0.5098        | -                      | -                      | -                      | -                      | -                     |
| 0.3046  | 30      | 0.426         | -                      | -                      | -                      | -                      | -                     |
| 0.4061  | 40      | 0.3262        | -                      | -                      | -                      | -                      | -                     |
| 0.5076  | 50      | 0.2131        | -                      | -                      | -                      | -                      | -                     |
| 0.6091  | 60      | 0.1892        | -                      | -                      | -                      | -                      | -                     |
| 0.7107  | 70      | 0.3049        | -                      | -                      | -                      | -                      | -                     |
| 0.8122  | 80      | 0.1617        | -                      | -                      | -                      | -                      | -                     |
| 0.9137  | 90      | 0.1214        | -                      | -                      | -                      | -                      | -                     |
| 1.0     | 99      | -             | 0.7895                 | 0.7919                 | 0.7800                 | 0.7685                 | 0.7361                |
| 1.0102  | 100     | 0.147         | -                      | -                      | -                      | -                      | -                     |
| 1.1117  | 110     | 0.0938        | -                      | -                      | -                      | -                      | -                     |
| 1.2132  | 120     | 0.1406        | -                      | -                      | -                      | -                      | -                     |
| 1.3147  | 130     | 0.1058        | -                      | -                      | -                      | -                      | -                     |
| 1.4162  | 140     | 0.1072        | -                      | -                      | -                      | -                      | -                     |
| 1.5178  | 150     | 0.0352        | -                      | -                      | -                      | -                      | -                     |
| 1.6193  | 160     | 0.0568        | -                      | -                      | -                      | -                      | -                     |
| 1.7208  | 170     | 0.1283        | -                      | -                      | -                      | -                      | -                     |
| 1.8223  | 180     | 0.066         | -                      | -                      | -                      | -                      | -                     |
| 1.9239  | 190     | 0.038         | -                      | -                      | -                      | -                      | -                     |
| 2.0     | 198     | -             | 0.7945                 | 0.7945                 | 0.7860                 | 0.7736                 | 0.7462                |
| 2.0203  | 200     | 0.0544        | -                      | -                      | -                      | -                      | -                     |
| 2.1218  | 210     | 0.0333        | -                      | -                      | -                      | -                      | -                     |
| 2.2234  | 220     | 0.042         | -                      | -                      | -                      | -                      | -                     |
| 2.3249  | 230     | 0.0489        | -                      | -                      | -                      | -                      | -                     |
| 2.4264  | 240     | 0.0498        | -                      | -                      | -                      | -                      | -                     |
| 2.5279  | 250     | 0.0119        | -                      | -                      | -                      | -                      | -                     |
| 2.6294  | 260     | 0.0273        | -                      | -                      | -                      | -                      | -                     |
| 2.7310  | 270     | 0.0719        | -                      | -                      | -                      | -                      | -                     |
| 2.8325  | 280     | 0.0366        | -                      | -                      | -                      | -                      | -                     |
| 2.9340  | 290     | 0.0333        | -                      | -                      | -                      | -                      | -                     |
| **3.0** | **297** | **-**         | **0.7927**             | **0.7952**             | **0.7881**             | **0.7743**             | **0.7477**            |
| 3.0305  | 300     | 0.0193        | -                      | -                      | -                      | -                      | -                     |
| 3.1320  | 310     | 0.0254        | -                      | -                      | -                      | -                      | -                     |
| 3.2335  | 320     | 0.0252        | -                      | -                      | -                      | -                      | -                     |
| 3.3350  | 330     | 0.039         | -                      | -                      | -                      | -                      | -                     |
| 3.4365  | 340     | 0.0224        | -                      | -                      | -                      | -                      | -                     |
| 3.5381  | 350     | 0.0091        | -                      | -                      | -                      | -                      | -                     |
| 3.6396  | 360     | 0.0356        | -                      | -                      | -                      | -                      | -                     |
| 3.7411  | 370     | 0.042         | -                      | -                      | -                      | -                      | -                     |
| 3.8426  | 380     | 0.038         | -                      | -                      | -                      | -                      | -                     |
| 3.9442  | 390     | 0.0088        | -                      | -                      | -                      | -                      | -                     |
| 3.9645  | 392     | -             | 0.7960                 | 0.7937                 | 0.7883                 | 0.7728                 | 0.7501                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->