Martins6 commited on
Commit
f772817
·
1 Parent(s): 14d63b0

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 231.72 +/- 34.59
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7af460413490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7af460413520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7af4604135b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7af460413640>", "_build": "<function ActorCriticPolicy._build at 0x7af4604136d0>", "forward": "<function ActorCriticPolicy.forward at 0x7af460413760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7af4604137f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7af460413880>", "_predict": "<function ActorCriticPolicy._predict at 0x7af460413910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7af4604139a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7af460413a30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7af460413ac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7af4603bf100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695495937216015178, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZWY77Mglc/ckd/u1XugL4r8QK+O0fXPQAAAAAAAAAA7YVVvhLF6TwPEzM6OeIBuU6Og75mLIa5AACAPwAAgD+zc869wwUeum2xSzm88ms0Xk8pO1albbgAAIA/AACAP5pJi7pxXBA8iSqivR6TU75jBz88UIYnvQAAAAAAAAAARn4svnGpETwZvz61Jrw7M6WVn70od5c0AACAPwAAgD/AYTW+bkWovJ1b47vHloa6t54hPu0zWDsAAIA/AACAP81bkrx7ppa6pXTGNmC0qzF9cpo68qTptQAAgD8AAIA/TVW2va5fgbpKdAq5hBX8s5cSCDu3cSE4AAAAAAAAgD8A7KW7zge2P8JNA78Us/4+rHzAOy3w7T0AAAAAAAAAAJM2LD6cgJw/37KEvE5ra74i9Xw9XrYWvgAAAAAAAAAAwI6/vY+KLrp9j5O77/yQtQ4SFbuyWK86AAAAAAAAgD9mqGq8KYwVuto82rZTZNWxtYgYO3YQAjYAAIA/AACAPzOubz0UVJi6qhQKuF7k7rKrBpc6jIcfNwAAgD8AAIA/ph1bvi8Nqz4WwOI9S0Y/vm0b4zzbzyq9AAAAAAAAAACm94a9FDyDujNKdLjc/+qzl/TZOqrXizcAAIA/AACAP010471cJ0u6qrDMOq7wSjZKppo7AIjsuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEvmrjo6jqMAWyUTegDjAF0lEdAnx9YdhiLEXV9lChoBkdAYODxc3VComgHTegDaAhHQJ8jOi1y/9J1fZQoaAZHQGbXXbVSXMRoB03oA2gIR0CfJ+4QBgeBdX2UKGgGR0Bh2YQvpQk5aAdN6ANoCEdAnyjPu9eyA3V9lChoBkdAYeK2F36hx2gHTegDaAhHQJ8tbnoxHoZ1fZQoaAZHQEmKWtU4rBloB01GAWgIR0CfLbwsoUi7dX2UKGgGR0BiBkM1CPZJaAdN6ANoCEdAnzI4B7u2JHV9lChoBkdAbrSNCqp97WgHTfgBaAhHQJ8/jCj1wo91fZQoaAZHQGOj8dgfEGZoB03oA2gIR0CfQULJCBwudX2UKGgGR8BFYeKjzqbCaAdNSAFoCEdAn0dcD8tPHnV9lChoBkdAZGLMAWBSUGgHTegDaAhHQJ9LaJm/WUd1fZQoaAZHQGHJ8lgMMJBoB03oA2gIR0CfTlhf0EowdX2UKGgGR0BjYlD6WPcSaAdN6ANoCEdAn08eFL39JnV9lChoBkdAYirhVENOM2gHTegDaAhHQJ9P/juKGcp1fZQoaAZHQGKAOlwcYIloB03oA2gIR0CfUVoSL61tdX2UKGgGR0BBKHf/FR51aAdNOQFoCEdAn1tQMUh3aHV9lChoBkdAbjtS1mapgmgHTYsDaAhHQJ9eZ9gF5fN1fZQoaAZHQF7c7f51vEVoB03oA2gIR0Cfdao0Q9RrdX2UKGgGR0BfAP6KtPpIaAdN6ANoCEdAn3losqaw2XV9lChoBkdAWwo9+w1R+GgHTegDaAhHQJ9/MLmZE2J1fZQoaAZHQFvAnwG4ZuRoB03oA2gIR0Cfhb5AhStOdX2UKGgGR0BiSl9MK1G9aAdN6ANoCEdAn4bBppN9IHV9lChoBkdAZjC1a4c3l2gHTegDaAhHQJ+K6gpSaVl1fZQoaAZHQGL6CLEUCaJoB03oA2gIR0Cfj5e1rqMWdX2UKGgGR0BwNb79AHE/aAdNxAJoCEdAn5dZDVpblnV9lChoBkdAWly0v4/NaGgHTegDaAhHQJ+bysFMZgp1fZQoaAZHQGN21vl2eQNoB03oA2gIR0CfndkCV8kVdX2UKGgGR0Bgdix/ustDaAdN6ANoCEdAn6tdAgPmP3V9lChoBkdAbsgMEzO5a2gHTTwCaAhHQJ+uRfx+a0B1fZQoaAZHQGZA2Dg62fFoB03oA2gIR0CfsEdOIqLCdX2UKGgGR0Bj/dpM6BAfaAdN6ANoCEdAn7Lz81n/UHV9lChoBkdAZ2Xg/keZHGgHTegDaAhHQJ+1GNCJGfB1fZQoaAZHQGMDK0UoKD1oB03oA2gIR0CfwXvi97F9dX2UKGgGR0BacUzGgi/xaAdN6ANoCEdAn8SyVGCqZXV9lChoBkdAYcx0PpY9xWgHTegDaAhHQJ/X7+l0o0B1fZQoaAZHQFgx71ZkkKNoB03oA2gIR0Cf2nla8pTddX2UKGgGR0BtKnI+4b0faAdNlwNoCEdAn9/t4NZvDXV9lChoBkdAWrNLbpNbkmgHTegDaAhHQJ/kwzP8hs91fZQoaAZHQGuBojOcDr9oB023AmgIR0Cf5WaXrt3OdX2UKGgGR0Bh/M2DQJHBaAdN6ANoCEdAn+qvKU3XI3V9lChoBkdAPtB0EHMUy2gHTWsBaAhHQJ/rVKcurZJ1fZQoaAZHQF7So/A0sOJoB03oA2gIR0Cf793Mpw0gdX2UKGgGR0BgZUnw5NoKaAdN6ANoCEdAn/ha3mV7hXV9lChoBkdAY5UFrVOKwmgHTegDaAhHQJ/79FEy+Ht1fZQoaAZHQHA2S0jTrmhoB01+A2gIR0CgAbTX8O0+dX2UKGgGR0BxOQLPUrkKaAdNnwNoCEdAoAIiLXL/0nV9lChoBkdAcDYlPacqfGgHTdADaAhHQKACzFuvUz91fZQoaAZHQGYLV1GLDQ9oB03oA2gIR0CgBZRkd3jddX2UKGgGR0BhcDtw71ZlaAdN6ANoCEdAoAZBoVVPvnV9lChoBkdAb14o8ZDRdGgHTSoDaAhHQKAGguZCv5h1fZQoaAZHQGyMhB7eEZloB00eA2gIR0CgCx27OE/TdX2UKGgGR0BwjGq4pc5baAdN3gJoCEdAoA1yoESuhnV9lChoBkdAZFnp9qk/KWgHTegDaAhHQKANhvWpZOl1fZQoaAZHQF+eKqGUOd5oB03oA2gIR0CgGR9SMtK7dX2UKGgGR0Bs4rq4YrJ9aAdNwwJoCEdAoByda2WpqHV9lChoBkdAYaWuXeFcp2gHTegDaAhHQKAerk7Omix1fZQoaAZHQFwJw71ZkkNoB03oA2gIR0CgHu5/smfHdX2UKGgGR0BsU4dfb9IgaAdN2AFoCEdAoB+kWbgCOnV9lChoBkdAaesfI0ZWJmgHTawDaAhHQKAgwcZLqUx1fZQoaAZHQGQyLcKw6hhoB03oA2gIR0CgIPA2hqTKdX2UKGgGR0Aj8vFm4AjqaAdNTAFoCEdAoCKr1K5CnnV9lChoBkdAbOYwM6RyO2gHTYsCaAhHQKAkEFcIJJJ1fZQoaAZHQHEM/ovBacJoB02LAWgIR0CgJFrhJiAldX2UKGgGR0Bs6kTBZZB+aAdNqQNoCEdAoCT9QqI8AHV9lChoBkdAawi83++/QGgHTY4BaAhHQKAlfyT6i0x1fZQoaAZHQGIJNhmXgLtoB03oA2gIR0CgKc7+1jRVdX2UKGgGR0BmZ0RBeHBUaAdN6ANoCEdAoCo+vt+kQHV9lChoBkdAYVyMKkVN6GgHTegDaAhHQKAq4QkHD791fZQoaAZHQGIvwV0tAcFoB03oA2gIR0CgLtPJaJQ+dX2UKGgGR0BtN9AC4jKQaAdNpwFoCEdAoDITRhMJyHV9lChoBkdAIZSrYGt6omgHTTkBaAhHQKA1ItxMnJF1fZQoaAZHQGVM0I9kjHJoB03oA2gIR0CgNbQ1BMSLdX2UKGgGR0BuBVZgXuVpaAdNUgJoCEdAoDhJDeCTU3V9lChoBkdAbWprHEMspWgHTWkCaAhHQKBC/4dIXj51fZQoaAZHQG4olxXGOuJoB03LAWgIR0CgQ3QXhwVCdX2UKGgGR0BwGSXb/Ot5aAdNsgNoCEdAoEOeQhfShXV9lChoBkdAcNBiDujRD2gHTcUCaAhHQKBD7olD4QB1fZQoaAZHQHAsxwuM+/xoB03QAWgIR0CgRByrHU+cdX2UKGgGR0Bu2qUiY9gXaAdNowNoCEdAoESvboKUmnV9lChoBkdAcAD7AtWdVmgHTYcDaAhHQKBEy2c8Tzx1fZQoaAZHQHE0JPM0P6NoB01LA2gIR0CgRb6gdwNtdX2UKGgGR0BxZFJoTPB0aAdNiQNoCEdAoEXFyo4uLHV9lChoBkdAY0Sg+yJKrmgHTegDaAhHQKBGOXlbNbF1fZQoaAZHQGwPNFBppN9oB03oAWgIR0CgR0S2x6fKdX2UKGgGR0BdHpDu0CzUaAdN6ANoCEdAoEeYcebNKXV9lChoBkdAcOsO9FnZkGgHTWABaAhHQKBH0kxASnN1fZQoaAZHQGxVEG7jDKpoB026AWgIR0CgR+yFPBSDdX2UKGgGR0BxPfy8SPELaAdNiwFoCEdAoEnyEHt4RnV9lChoBkdAa4SJl8PWhGgHTSACaAhHQKBL3f/m1Y11fZQoaAZHQHFY4igTRIBoB02PAWgIR0CgTHfM4cWCdX2UKGgGR0AwqwnH/95yaAdNNwFoCEdAoE2TRQaaTnV9lChoBkdAbRvhxYJVsGgHTd4BaAhHQKBPzDYRNAV1fZQoaAZHQG1wN5MURFtoB02iAWgIR0CgUIQF9roGdX2UKGgGR0BxGfVAiV0LaAdNsgFoCEdAoFQnZ9NN8HV9lChoBkdAbHvcer+5v2gHTawBaAhHQKBUgShakh11fZQoaAZHQHATzeoDPnloB03ZAWgIR0CgVs6kAPupdX2UKGgGR0Bw4LaQFLWaaAdN5wFoCEdAoFtTKHO8kHV9lChoBkdAcPD8an7522gHTXkBaAhHQKBd79cbBGh1fZQoaAZHQHAoFUdaMaVoB02YA2gIR0CgXp7yYoiLdX2UKGgGR0BvTFNxlxwRaAdNaAFoCEdAoGETqnm7rnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-mlp.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6ba593c037ea7d8bf8bd107a9d6229e0cdfd82566fb3da8aba4a26b8a0ffe7f
3
+ size 146759
ppo-LunarLander-v2-mlp/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-mlp/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7af460413490>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7af460413520>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7af4604135b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7af460413640>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7af4604136d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7af460413760>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7af4604137f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7af460413880>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7af460413910>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7af4604139a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7af460413a30>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7af460413ac0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7af4603bf100>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1695495937216015178,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZWY77Mglc/ckd/u1XugL4r8QK+O0fXPQAAAAAAAAAA7YVVvhLF6TwPEzM6OeIBuU6Og75mLIa5AACAPwAAgD+zc869wwUeum2xSzm88ms0Xk8pO1albbgAAIA/AACAP5pJi7pxXBA8iSqivR6TU75jBz88UIYnvQAAAAAAAAAARn4svnGpETwZvz61Jrw7M6WVn70od5c0AACAPwAAgD/AYTW+bkWovJ1b47vHloa6t54hPu0zWDsAAIA/AACAP81bkrx7ppa6pXTGNmC0qzF9cpo68qTptQAAgD8AAIA/TVW2va5fgbpKdAq5hBX8s5cSCDu3cSE4AAAAAAAAgD8A7KW7zge2P8JNA78Us/4+rHzAOy3w7T0AAAAAAAAAAJM2LD6cgJw/37KEvE5ra74i9Xw9XrYWvgAAAAAAAAAAwI6/vY+KLrp9j5O77/yQtQ4SFbuyWK86AAAAAAAAgD9mqGq8KYwVuto82rZTZNWxtYgYO3YQAjYAAIA/AACAPzOubz0UVJi6qhQKuF7k7rKrBpc6jIcfNwAAgD8AAIA/ph1bvi8Nqz4WwOI9S0Y/vm0b4zzbzyq9AAAAAAAAAACm94a9FDyDujNKdLjc/+qzl/TZOqrXizcAAIA/AACAP010471cJ0u6qrDMOq7wSjZKppo7AIjsuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGEvmrjo6jqMAWyUTegDjAF0lEdAnx9YdhiLEXV9lChoBkdAYODxc3VComgHTegDaAhHQJ8jOi1y/9J1fZQoaAZHQGbXXbVSXMRoB03oA2gIR0CfJ+4QBgeBdX2UKGgGR0Bh2YQvpQk5aAdN6ANoCEdAnyjPu9eyA3V9lChoBkdAYeK2F36hx2gHTegDaAhHQJ8tbnoxHoZ1fZQoaAZHQEmKWtU4rBloB01GAWgIR0CfLbwsoUi7dX2UKGgGR0BiBkM1CPZJaAdN6ANoCEdAnzI4B7u2JHV9lChoBkdAbrSNCqp97WgHTfgBaAhHQJ8/jCj1wo91fZQoaAZHQGOj8dgfEGZoB03oA2gIR0CfQULJCBwudX2UKGgGR8BFYeKjzqbCaAdNSAFoCEdAn0dcD8tPHnV9lChoBkdAZGLMAWBSUGgHTegDaAhHQJ9LaJm/WUd1fZQoaAZHQGHJ8lgMMJBoB03oA2gIR0CfTlhf0EowdX2UKGgGR0BjYlD6WPcSaAdN6ANoCEdAn08eFL39JnV9lChoBkdAYirhVENOM2gHTegDaAhHQJ9P/juKGcp1fZQoaAZHQGKAOlwcYIloB03oA2gIR0CfUVoSL61tdX2UKGgGR0BBKHf/FR51aAdNOQFoCEdAn1tQMUh3aHV9lChoBkdAbjtS1mapgmgHTYsDaAhHQJ9eZ9gF5fN1fZQoaAZHQF7c7f51vEVoB03oA2gIR0Cfdao0Q9RrdX2UKGgGR0BfAP6KtPpIaAdN6ANoCEdAn3losqaw2XV9lChoBkdAWwo9+w1R+GgHTegDaAhHQJ9/MLmZE2J1fZQoaAZHQFvAnwG4ZuRoB03oA2gIR0Cfhb5AhStOdX2UKGgGR0BiSl9MK1G9aAdN6ANoCEdAn4bBppN9IHV9lChoBkdAZjC1a4c3l2gHTegDaAhHQJ+K6gpSaVl1fZQoaAZHQGL6CLEUCaJoB03oA2gIR0Cfj5e1rqMWdX2UKGgGR0BwNb79AHE/aAdNxAJoCEdAn5dZDVpblnV9lChoBkdAWly0v4/NaGgHTegDaAhHQJ+bysFMZgp1fZQoaAZHQGN21vl2eQNoB03oA2gIR0CfndkCV8kVdX2UKGgGR0Bgdix/ustDaAdN6ANoCEdAn6tdAgPmP3V9lChoBkdAbsgMEzO5a2gHTTwCaAhHQJ+uRfx+a0B1fZQoaAZHQGZA2Dg62fFoB03oA2gIR0CfsEdOIqLCdX2UKGgGR0Bj/dpM6BAfaAdN6ANoCEdAn7Lz81n/UHV9lChoBkdAZ2Xg/keZHGgHTegDaAhHQJ+1GNCJGfB1fZQoaAZHQGMDK0UoKD1oB03oA2gIR0CfwXvi97F9dX2UKGgGR0BacUzGgi/xaAdN6ANoCEdAn8SyVGCqZXV9lChoBkdAYcx0PpY9xWgHTegDaAhHQJ/X7+l0o0B1fZQoaAZHQFgx71ZkkKNoB03oA2gIR0Cf2nla8pTddX2UKGgGR0BtKnI+4b0faAdNlwNoCEdAn9/t4NZvDXV9lChoBkdAWrNLbpNbkmgHTegDaAhHQJ/kwzP8hs91fZQoaAZHQGuBojOcDr9oB023AmgIR0Cf5WaXrt3OdX2UKGgGR0Bh/M2DQJHBaAdN6ANoCEdAn+qvKU3XI3V9lChoBkdAPtB0EHMUy2gHTWsBaAhHQJ/rVKcurZJ1fZQoaAZHQF7So/A0sOJoB03oA2gIR0Cf793Mpw0gdX2UKGgGR0BgZUnw5NoKaAdN6ANoCEdAn/ha3mV7hXV9lChoBkdAY5UFrVOKwmgHTegDaAhHQJ/79FEy+Ht1fZQoaAZHQHA2S0jTrmhoB01+A2gIR0CgAbTX8O0+dX2UKGgGR0BxOQLPUrkKaAdNnwNoCEdAoAIiLXL/0nV9lChoBkdAcDYlPacqfGgHTdADaAhHQKACzFuvUz91fZQoaAZHQGYLV1GLDQ9oB03oA2gIR0CgBZRkd3jddX2UKGgGR0BhcDtw71ZlaAdN6ANoCEdAoAZBoVVPvnV9lChoBkdAb14o8ZDRdGgHTSoDaAhHQKAGguZCv5h1fZQoaAZHQGyMhB7eEZloB00eA2gIR0CgCx27OE/TdX2UKGgGR0BwjGq4pc5baAdN3gJoCEdAoA1yoESuhnV9lChoBkdAZFnp9qk/KWgHTegDaAhHQKANhvWpZOl1fZQoaAZHQF+eKqGUOd5oB03oA2gIR0CgGR9SMtK7dX2UKGgGR0Bs4rq4YrJ9aAdNwwJoCEdAoByda2WpqHV9lChoBkdAYaWuXeFcp2gHTegDaAhHQKAerk7Omix1fZQoaAZHQFwJw71ZkkNoB03oA2gIR0CgHu5/smfHdX2UKGgGR0BsU4dfb9IgaAdN2AFoCEdAoB+kWbgCOnV9lChoBkdAaesfI0ZWJmgHTawDaAhHQKAgwcZLqUx1fZQoaAZHQGQyLcKw6hhoB03oA2gIR0CgIPA2hqTKdX2UKGgGR0Aj8vFm4AjqaAdNTAFoCEdAoCKr1K5CnnV9lChoBkdAbOYwM6RyO2gHTYsCaAhHQKAkEFcIJJJ1fZQoaAZHQHEM/ovBacJoB02LAWgIR0CgJFrhJiAldX2UKGgGR0Bs6kTBZZB+aAdNqQNoCEdAoCT9QqI8AHV9lChoBkdAawi83++/QGgHTY4BaAhHQKAlfyT6i0x1fZQoaAZHQGIJNhmXgLtoB03oA2gIR0CgKc7+1jRVdX2UKGgGR0BmZ0RBeHBUaAdN6ANoCEdAoCo+vt+kQHV9lChoBkdAYVyMKkVN6GgHTegDaAhHQKAq4QkHD791fZQoaAZHQGIvwV0tAcFoB03oA2gIR0CgLtPJaJQ+dX2UKGgGR0BtN9AC4jKQaAdNpwFoCEdAoDITRhMJyHV9lChoBkdAIZSrYGt6omgHTTkBaAhHQKA1ItxMnJF1fZQoaAZHQGVM0I9kjHJoB03oA2gIR0CgNbQ1BMSLdX2UKGgGR0BuBVZgXuVpaAdNUgJoCEdAoDhJDeCTU3V9lChoBkdAbWprHEMspWgHTWkCaAhHQKBC/4dIXj51fZQoaAZHQG4olxXGOuJoB03LAWgIR0CgQ3QXhwVCdX2UKGgGR0BwGSXb/Ot5aAdNsgNoCEdAoEOeQhfShXV9lChoBkdAcNBiDujRD2gHTcUCaAhHQKBD7olD4QB1fZQoaAZHQHAsxwuM+/xoB03QAWgIR0CgRByrHU+cdX2UKGgGR0Bu2qUiY9gXaAdNowNoCEdAoESvboKUmnV9lChoBkdAcAD7AtWdVmgHTYcDaAhHQKBEy2c8Tzx1fZQoaAZHQHE0JPM0P6NoB01LA2gIR0CgRb6gdwNtdX2UKGgGR0BxZFJoTPB0aAdNiQNoCEdAoEXFyo4uLHV9lChoBkdAY0Sg+yJKrmgHTegDaAhHQKBGOXlbNbF1fZQoaAZHQGwPNFBppN9oB03oAWgIR0CgR0S2x6fKdX2UKGgGR0BdHpDu0CzUaAdN6ANoCEdAoEeYcebNKXV9lChoBkdAcOsO9FnZkGgHTWABaAhHQKBH0kxASnN1fZQoaAZHQGxVEG7jDKpoB026AWgIR0CgR+yFPBSDdX2UKGgGR0BxPfy8SPELaAdNiwFoCEdAoEnyEHt4RnV9lChoBkdAa4SJl8PWhGgHTSACaAhHQKBL3f/m1Y11fZQoaAZHQHFY4igTRIBoB02PAWgIR0CgTHfM4cWCdX2UKGgGR0AwqwnH/95yaAdNNwFoCEdAoE2TRQaaTnV9lChoBkdAbRvhxYJVsGgHTd4BaAhHQKBPzDYRNAV1fZQoaAZHQG1wN5MURFtoB02iAWgIR0CgUIQF9roGdX2UKGgGR0BxGfVAiV0LaAdNsgFoCEdAoFQnZ9NN8HV9lChoBkdAbHvcer+5v2gHTawBaAhHQKBUgShakh11fZQoaAZHQHATzeoDPnloB03ZAWgIR0CgVs6kAPupdX2UKGgGR0Bw4LaQFLWaaAdN5wFoCEdAoFtTKHO8kHV9lChoBkdAcPD8an7522gHTXkBaAhHQKBd79cbBGh1fZQoaAZHQHAoFUdaMaVoB02YA2gIR0CgXp7yYoiLdX2UKGgGR0BvTFNxlxwRaAdNaAFoCEdAoGETqnm7rnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-mlp/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:188733d5366084a6efd6e3e9a3befea2951a1cffda19b43381ce615f057ee8ef
3
+ size 87929
ppo-LunarLander-v2-mlp/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12a2ffce42aa1f3965076dc2497992d8a578a3f25d0732a6805663dbf6e2ddcc
3
+ size 43329
ppo-LunarLander-v2-mlp/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-mlp/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (186 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 231.7185250869681, "std_reward": 34.59335223304422, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-23T20:18:24.007074"}