MattBoraske
commited on
Commit
·
680452c
1
Parent(s):
d4826b5
Upload DQN LunarLander-v2 agent that was trained for 10 million timesteps
Browse files- DQN-LunarLander-v2.zip +3 -0
- DQN-LunarLander-v2/_stable_baselines3_version +1 -0
- DQN-LunarLander-v2/data +115 -0
- DQN-LunarLander-v2/policy.optimizer.pth +3 -0
- DQN-LunarLander-v2/policy.pth +3 -0
- DQN-LunarLander-v2/pytorch_variables.pth +3 -0
- DQN-LunarLander-v2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
DQN-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99f1f46374c18749ff17c44a9d83aed670507b56a6fec696e6233b068427a36c
|
3 |
+
size 109701
|
DQN-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
DQN-LunarLander-v2/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f635e174b80>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f635e174c10>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f635e174ca0>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f635e174d30>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f635e174dc0>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f635e174e50>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f635e174ee0>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f635e17b980>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {},
|
19 |
+
"num_timesteps": 10000000,
|
20 |
+
"_total_timesteps": 10000000,
|
21 |
+
"_num_timesteps_at_start": 0,
|
22 |
+
"seed": null,
|
23 |
+
"action_noise": null,
|
24 |
+
"start_time": 1682613620571638570,
|
25 |
+
"learning_rate": 0.0001,
|
26 |
+
"tensorboard_log": null,
|
27 |
+
"lr_schedule": {
|
28 |
+
":type:": "<class 'function'>",
|
29 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
30 |
+
},
|
31 |
+
"_last_obs": null,
|
32 |
+
"_last_episode_starts": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_original_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMizDxc41K60HRGMxcJrC+gwJE7KJrHswAAgD8AAIA/zQMjvnSOnD4qRSc9MJ67O6msI7xm4kk9AAAAAAAAAADNhPW8ASmSPxK0vb0pTxu+o5o6PfD3Xr0AAAAAAAAAAGaSrLyOMkc/YAHQPbX93739ycs9nd9muQAAAAAAAAAATfKgvcPBW7pnLEyz8pUvsCNrlLo1zc0zAACAPwAAgD8zbO08lEmHPd6eZj0GAla9ZQeCPVK6djgAAAAAAAAAAM3tjb2hkXo+JPWqPavjBL0vOSA8E/TCPAAAAAAAAAAAoDgqvg3sSz5AALa9MHjDvbV37LywJ2e9AAAAAAAAAADWVe0+8op7P9Vf9z29ARu+wbuZPnodZDwAAAAAAAAAADPBfbwoBbE+yjpGOmsRTr11p2g95kGOOwAAAAAAAAAAZrrIu+JKmD+s+ES9tRG5vew7FD0AL1o8AAAAAAAAAADNIEK+MBzxPsUXgz1bSBC9g3ezvPnJmTsAAAAAAAAAAOZGN72J2Aw/xoPEvIDOn72Y1U89+kFSvAAAAAAAAAAAmh/EvMNRfbr7dsyz+h5rLixnY7u4isQzAACAPwAAgD8zqpO9rN1gPoQ7Nj0BH1C94lLkPbCUQ70AAAAAAAAAAAblPb5PTD4+piH2PMV0CL0ATj29IQC3OgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_episode_num": 15353,
|
41 |
+
"use_sde": false,
|
42 |
+
"sde_sample_freq": -1,
|
43 |
+
"_current_progress_remaining": 0.0,
|
44 |
+
"_stats_window_size": 100,
|
45 |
+
"ep_info_buffer": {
|
46 |
+
":type:": "<class 'collections.deque'>",
|
47 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZHYWvVNnX0CUhpRSlIwBbJRN5gOMAXSUR0DOFkst5D7ZdX2UKGgGaAloD0MI7ded7jxhH0CUhpRSlGgVS+toFkdAzha5ga3qiXV9lChoBmgJaA9DCAvPS8XGTDdAlIaUUpRoFU3oA2gWR0DOFtk8TzundX2UKGgGaAloD0MIVRSvsrZNMkCUhpRSlGgVS+9oFkdAzhdswRGtp3V9lChoBmgJaA9DCPoq+djdJWhAlIaUUpRoFU2fA2gWR0DOF74LThHcdX2UKGgGaAloD0MIl3FTA81XNUCUhpRSlGgVS+1oFkdAzhiVkvK2a3V9lChoBmgJaA9DCPmFV5I8y0fAlIaUUpRoFU3oA2gWR0DOGPCup0fYdX2UKGgGaAloD0MIskeoGVK7aUCUhpRSlGgVTWQCaBZHQM4ZPbd8ArB1fZQoaAZoCWgPQwhOKa+V0JpeQJSGlFKUaBVNpANoFkdAzhnmHeJpFnV9lChoBmgJaA9DCFQdcjPcBVBAlIaUUpRoFU3oA2gWR0DOGmLofSx8dX2UKGgGaAloD0MIzAhvD0LeRUCUhpRSlGgVTegDaBZHQM4av0utfXx1fZQoaAZoCWgPQwg6rdug9nFDQJSGlFKUaBVN6ANoFkdAzhzKbXHzYnV9lChoBmgJaA9DCI4iaw2l3ilAlIaUUpRoFUvuaBZHQM4d/NCiRGN1fZQoaAZoCWgPQwhj0t9L4eEOQJSGlFKUaBVN6ANoFkdAzh6hl9SdfHV9lChoBmgJaA9DCHU7+8qDf2xAlIaUUpRoFU10AmgWR0DOHqMyJsO5dX2UKGgGaAloD0MIBmfw9wt3Y0CUhpRSlGgVTXIDaBZHQM4eruvllsh1fZQoaAZoCWgPQwgDzHwHv+hhQJSGlFKUaBVN5gNoFkdAziBNJ0W/J3V9lChoBmgJaA9DCFNA2v8AKmVAlIaUUpRoFU13A2gWR0DOIFmFYdQwdX2UKGgGaAloD0MITdpU3SNbKkCUhpRSlGgVTegDaBZHQM4iYekYXO51fZQoaAZoCWgPQwhsy4CzlMpGwJSGlFKUaBVN6ANoFkdAziNZTUiIL3V9lChoBmgJaA9DCO27IvjfEjXAlIaUUpRoFU3oA2gWR0DOJJW5DqnndX2UKGgGaAloD0MIYyZRL/iAOsCUhpRSlGgVTegDaBZHQM4lIURWcSZ1fZQoaAZoCWgPQwiFevoI/LtBwJSGlFKUaBVN6ANoFkdAziZUcNpdr3V9lChoBmgJaA9DCKG5TiMtXSTAlIaUUpRoFU3oA2gWR0DOJrjbWVeKdX2UKGgGaAloD0MImBk2ynoWaUCUhpRSlGgVTVIDaBZHQM4m9Ljghr51fZQoaAZoCWgPQwifceFASJhCQJSGlFKUaBVN6ANoFkdAzicFWf9P13V9lChoBmgJaA9DCGvwvioXWEPAlIaUUpRoFU3oA2gWR0DOJ61g+hXbdX2UKGgGaAloD0MItoKmJdYga0CUhpRSlGgVTTsCaBZHQM4nt+iSJTF1fZQoaAZoCWgPQwiLMhtkkiEnQJSGlFKUaBVN6ANoFkdAzin5oUzsQnV9lChoBmgJaA9DCHl2+daH2WtAlIaUUpRoFU1jAmgWR0DOKhxdyDIzdX2UKGgGaAloD0MIgxd9BWmSSkCUhpRSlGgVTegDaBZHQM4qyc+7lJZ1fZQoaAZoCWgPQwgP7WMFv20JwJSGlFKUaBVN6ANoFkdAzitaOz6acHV9lChoBmgJaA9DCFPqknGMwD7AlIaUUpRoFU3oA2gWR0DOK1vDaXa8dX2UKGgGaAloD0MIKqp+pfNdOsCUhpRSlGgVTegDaBZHQM4rZyVGCqZ1fZQoaAZoCWgPQwjpf7kWLUA0wJSGlFKUaBVN6ANoFkdAzizZeTFERnV9lChoBmgJaA9DCI4CRMGMlmhAlIaUUpRoFU1SAmgWR0DOLjUlLOAzdX2UKGgGaAloD0MIp5GWylu0YUCUhpRSlGgVTTEDaBZHQM4u4Nbs4T91fZQoaAZoCWgPQwh1BduIJ55eQJSGlFKUaBVNxwNoFkdAzi/wH/Lkj3V9lChoBmgJaA9DCBpQb0ZN8WZAlIaUUpRoFU0VA2gWR0DOMBTsByS3dX2UKGgGaAloD0MIww/Op45fTECUhpRSlGgVTegDaBZHQM4xnfXf6451fZQoaAZoCWgPQwjooEs49P1fQJSGlFKUaBVNfQNoFkdAzjMu6gdwN3V9lChoBmgJaA9DCFdAoZ4+/j7AlIaUUpRoFU3oA2gWR0DOM0MMoc7ydX2UKGgGaAloD0MIPGagMv4pQECUhpRSlGgVS/doFkdAzjNMbutwJnV9lChoBmgJaA9DCJChYweVPkTAlIaUUpRoFU3oA2gWR0DOM8X3YcvNdX2UKGgGaAloD0MIbtv3qL8+J8CUhpRSlGgVTegDaBZHQM404CG34Kx1fZQoaAZoCWgPQwj3d7ZHb3gLwJSGlFKUaBVL8GgWR0DONwBWDHwPdX2UKGgGaAloD0MIfuAqTyAMK0CUhpRSlGgVTegDaBZHQM44AWxyGSJ1fZQoaAZoCWgPQwghAg6hStUpwJSGlFKUaBVN6ANoFkdAzjgpvGZNPHV9lChoBmgJaA9DCE1oklhSkWZAlIaUUpRoFU2QA2gWR0DOODiC17Y1dX2UKGgGaAloD0MIeNUD5qHAYECUhpRSlGgVTbkDaBZHQM44RvM8ox51fZQoaAZoCWgPQwh79lympjtvQJSGlFKUaBVNagFoFkdAzjiLgIhQnHV9lChoBmgJaA9DCMKlY84zijzAlIaUUpRoFU3oA2gWR0DOOSJY/3WXdX2UKGgGaAloD0MIJ9pVSPmtPcCUhpRSlGgVTegDaBZHQM45KsQumJp1fZQoaAZoCWgPQwgv+Z/8Xe9qQJSGlFKUaBVNpgJoFkdAzjktEUCaJHV9lChoBmgJaA9DCJ33/3HCx2JAlIaUUpRoFU3CA2gWR0DOOay2BreqdX2UKGgGaAloD0MIUkZcAJqLbUCUhpRSlGgVTd8BaBZHQM46aeTmnwZ1fZQoaAZoCWgPQwioN6Pmq9JOQJSGlFKUaBVN6ANoFkdAzjrBmozeoHV9lChoBmgJaA9DCN7jTBO2zxLAlIaUUpRoFU3oA2gWR0DOOzDhxYJWdX2UKGgGaAloD0MIR+aRPxhAQkCUhpRSlGgVS/5oFkdAzjtF6xgRb3V9lChoBmgJaA9DCMxetp02T29AlIaUUpRoFU2lAWgWR0DOPCjfR/mUdX2UKGgGaAloD0MIY3yYvaylcECUhpRSlGgVTbwBaBZHQM49sz4tYjl1fZQoaAZoCWgPQwjvyFht/ncwQJSGlFKUaBVN6ANoFkdAzj4DdonKGXV9lChoBmgJaA9DCHZQiesYry7AlIaUUpRoFUvaaBZHQM4/MLMC9yt1fZQoaAZoCWgPQwhi3A2itQo2wJSGlFKUaBVN6ANoFkdAzj+PHOKO1nV9lChoBmgJaA9DCP2Es1vLpDLAlIaUUpRoFU3oA2gWR0DOQABfBvaUdX2UKGgGaAloD0MIUfcBSG1ubUCUhpRSlGgVTTECaBZHQM5C31qFh5R1fZQoaAZoCWgPQwgecF0xI9wMQJSGlFKUaBVN6ANoFkdAzkL3ZAY51nV9lChoBmgJaA9DCCnMe5xpHG5AlIaUUpRoFU2FAWgWR0DOQxo1YQrddX2UKGgGaAloD0MIgPEMGvqPJkCUhpRSlGgVTegDaBZHQM5ERJjc2zh1fZQoaAZoCWgPQwi1GachKvlhQJSGlFKUaBVN3QNoFkdAzkR2yhzvJHV9lChoBmgJaA9DCPoq+dhdAC1AlIaUUpRoFU3oA2gWR0DORHw2MsH0dX2UKGgGaAloD0MITfkQVI0SOECUhpRSlGgVTegDaBZHQM5FC02tMf11fZQoaAZoCWgPQwj2KFyPwmE/QJSGlFKUaBVN6ANoFkdAzkXehoM8YHV9lChoBmgJaA9DCKNcGr/wdG1AlIaUUpRoFU0tAmgWR0DORhhikO7QdX2UKGgGaAloD0MImrZ/ZaXpHECUhpRSlGgVTegDaBZHQM5GvBw2l2x1fZQoaAZoCWgPQwh+Oh4zUANBwJSGlFKUaBVN6ANoFkdAzkd+PZqVQnV9lChoBmgJaA9DCGUYd4Noc1xAlIaUUpRoFU2XA2gWR0DOR48wztTldX2UKGgGaAloD0MIlIPZBBjiNkCUhpRSlGgVTegDaBZHQM5Hx7yxzJZ1fZQoaAZoCWgPQwisVFBRdalnQJSGlFKUaBVNRQNoFkdAzklXvddmhHV9lChoBmgJaA9DCBhgH526+ijAlIaUUpRoFU0JAWgWR0DOSi0GgSOBdX2UKGgGaAloD0MIycfuAiXhNsCUhpRSlGgVTegDaBZHQM5Loe1SflJ1fZQoaAZoCWgPQwjDmsqisJRsQJSGlFKUaBVNQgJoFkdAzku0GorFwXV9lChoBmgJaA9DCEymCkYlGUrAlIaUUpRoFU3oA2gWR0DOTDre40/GdX2UKGgGaAloD0MIs34zMd0EZkCUhpRSlGgVTfECaBZHQM5M3g6Mir11fZQoaAZoCWgPQwhPH4E//BxmQJSGlFKUaBVN5gJoFkdAzk14o5PuX3V9lChoBmgJaA9DCK2E7pI4KxlAlIaUUpRoFU3oA2gWR0DOT38AeaKDdX2UKGgGaAloD0MIYeEkzR8TLUCUhpRSlGgVTegDaBZHQM5PkWNFSbZ1fZQoaAZoCWgPQwh4JclzfR8pQJSGlFKUaBVN6ANoFkdAzk+sZwXIl3V9lChoBmgJaA9DCOzbSUT4MWJAlIaUUpRoFU3PA2gWR0DOUDWEEkjYdX2UKGgGaAloD0MInz4Cf3jObkCUhpRSlGgVTa4BaBZHQM5QWYzJp351fZQoaAZoCWgPQwiqLXWQ16NkQJSGlFKUaBVNagNoFkdAzlBcN/e+EnV9lChoBmgJaA9DCDUNiuYBzBtAlIaUUpRoFU3oA2gWR0DOUHshouf3dX2UKGgGaAloD0MIlSu8y0UKSsCUhpRSlGgVS/NoFkdAzlCoLvTgEXV9lChoBmgJaA9DCL9FJ0utnyLAlIaUUpRoFU3oA2gWR0DOUfpMtbs4dX2UKGgGaAloD0MIxOv6BTu/YECUhpRSlGgVTbsDaBZHQM5SdumzjWF1fZQoaAZoCWgPQwgib7n6sSNAwJSGlFKUaBVN6ANoFkdAzlMRGG21D3V9lChoBmgJaA9DCPRRRlwALmxAlIaUUpRoFU0MAmgWR0DOUxzHU+cIdX2UKGgGaAloD0MIhzYAGxD1ZkCUhpRSlGgVTcoCaBZHQM5U6JfQa751fZQoaAZoCWgPQwgJ+aBns0prQJSGlFKUaBVNFQJoFkdAzlVKeYlY2nV9lChoBmgJaA9DCOhOsP86/z5AlIaUUpRoFU3oA2gWR0DOVdsx7AtWdWUu"
|
48 |
+
},
|
49 |
+
"ep_success_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
52 |
+
},
|
53 |
+
"_n_updates": 155469,
|
54 |
+
"observation_space": {
|
55 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
56 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
57 |
+
"dtype": "float32",
|
58 |
+
"_shape": [
|
59 |
+
8
|
60 |
+
],
|
61 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
62 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
63 |
+
"bounded_below": "[False False False False False False False False]",
|
64 |
+
"bounded_above": "[False False False False False False False False]",
|
65 |
+
"_np_random": null
|
66 |
+
},
|
67 |
+
"action_space": {
|
68 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
69 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAK6q4mwkfbg3tqbAAL/0HzDGROpU92JjrnKQGHc0X+V9L8oU56iCBKZDD3gfC/ul2pl6OvyhgLhBbG1qX+uZPAQ2CDGpVrhqgkm5wHpROZ6YlyQd+MlUXoiQLOiMUmo9hBkPGemucIwU00atKyiREUz/YwwVnde255jy2WkCbdDmWKcb+vl74VJIhFtKioT+fbmr4qp5yZOkJlY6Py0UTUzihG9ZsyPL/1kFoho+UiZczMyhxIuA9Q5duOQ94QheFKzygMvKCxGaVD3UGIUfiZDqmj1Cy+d9EIA6CQjq4GtGjSnN+G6VgCg88k+LJyZdaKpY8CAt3Dn4vCb/ctZojN5u3JQbY2OAmPto5rkY8JqsqeI8T69xvN6lwQOhKtFKjZMxnlOG7AW7HXBg+PsczmcrfQuMZ+pz3wXS+qZrIHD7klG8xenHb2vwdwyT720RGL/lFiOhNAVFI62xxPjoogK21yTGHKkm2UkFM+PeDyZCB49+xl7UZ4LOePfaZIJjXPVnwSD48K8LVFoSl9/AwJtfd/uGA2ne+fRsXhOZSB2MC91+TgsZjqBzVloeg/OA9VlaLmg5Rmu2pj6ll2kZ/RnXsigEtdm4Euv/HYc3nrn3mQeMEpkeTCr+4j0/0sJOHNKe1vMKT3bYDh3sajmSv2lOWhe7xIqNYC3YAEw7RJ6VTAS6SM3Z12BnL/fjSCiJP1V0lLK1a3U788LqeEbyhnM+ddj6KwHSQ70NJYBq4BiLbdnz7oOpYQrvKb1VBpwtNMHg/bxWGHxlaDdU8Bd7hso71QsTcAcFQv98gUJkzaaL0/jQBImC1Flmi1evNrCLVGvM3W+htBQNocl+ZWfhli48n3O7eq0o2200JRHgyDrqyNBcfLSiuc0iMmqe2Xm8NH1dwdlnPFtYpHb87plvjSDD3NUt0RHkvn1AyKB44/JJdmbZvgDnAokrdVWrzT9mz8koEyddHZhbS2HXdxUJIY9cuaz3wMxwgOQ2EGzoCrFmo+Snx6/V76okGzLbOQ9jvB2QbeBhWejA1TDPffbM8dQGE4Arvl4eIpvnrKNKPhsI+OihbnjtEwnWXdE1CDf750NkAJOr8IICXoAsevZG4F2GvHB7y0MtPh9MtaSlkFfCWRixKggWQL8P06hZ/Lm4/FoewwnZAZ/+PuTIOCopd1UMahi5QueQd5qv0mOPPeaBaidRZyk3y6Xqvieuhp0wL4+pPCxvMi9m8vTeP7AgNpyD/WOYElTAMZidshdgsZfn+NVi+1RfqT8/Bm9TQTynK8r5frnj+YJF/xsGkZBmEjWapX/cqtcwVfps4Bw/BBIcD1RpXQeZ/c+YQjM5j+BUw6m8jp5p7RVRNJ5x2/ODzbJnknazfETlUMT8kX45Zn9FlgRfYnAhPlt3zErxrW02CPaSLQ7bD+akptCfSZdkklFMD39dGjuHsDAK/mkeXNL6Eqkiwo1fwyidyrvjv5xrUxXsz0p8yVtUNfRLk+JSFXtS59aCVk9VD2NOIZo8tCHQ70z8WRuhFDItRQSkw5+Oe8+1YQAKC/nhFSNvXQtFvFgO/NMDyLJ9PzNmAJfLEwXR/d3tctnejiJ56rvCEDDyFw61HlhQ1E03dpDZ5kHYrjF5X5/9imNHuKPF+Fo3hO4M2Icp5TvTz9YS0S8y8UWmTPx/+tSgprT6gTUfMOPawhrkDjtSThrUnjfAsIvncdvSM8689ePIwh0KvE48xM7dxGX96KlMci4pvxnD/BUpyl92H839WU8F6aNGRwYi8ldraREHow81Wp1s4bM6fxwwwbi0Bi31JWYJc8OrxaIG9/uvIFKv2Ah1X73nRgUWrpDXx2gnvaOhglMUY+GxEnPASQSxUM0++ViPCcgtMvPaFVQfKUXJNjrhTP0Z2SgRupTR/KUPjdBoXUMGy8vyc4cWb7kfwmXTtG/Q2aNuf1tcfedPMcvxi6GUnAQclowJRp6N3Ea1ld04MOlrWmWnBDcgsSedizMdxHT2YVPHTvv9frv35iRbZSe3jMRbn02pgthEcqSZNDCw82p/JSQqwFo83pg08xm2Abc4E15FeJ2eT06BOfWfU8ANGB96ybZkbI3kNNsUrSkwNcORzTZtFVZ8vNcrE7xS44v3Qur22zqNyWLyKVeRc3opPRi5T7vIMPsZAxxFfdobtftoOQ3VRSVRnEidjTcZMymJzVs5Sssn5KuCi2jiRP76rn5mQe0aytOiVkU++/InmuqChBLxM09NHME9/cutUQ6MDLcKdE8/yahiJqvB+YuX2gsHPdp/dGG/gN4OTuO2nyvS0Mg0IrQm2npCm3iJtgg+DjCw5AFlK7rfN792pU244GxVFESIzVA9Fx7epLnAsatg0OiOluQCgZ5LFf+mPfrzP3FBn8T6zfG6koibqFWcYADobgcX/5AT2wlbeO8YSprIAndeq0w66EEl6fP22CC7hTmitFPYEwOJ7T1Nsq66Ci4C5T4ls/BLLYGL/jvHpQ2Fw/8yekSjuhwSTKwanEYCcrHMnteR+enI3zociAIKtkvvdpNboA12v/mCBpWsaYUE8LWlgKDqBs75/Z+E9xkSyPATTUI8xBvRr1JAqaSofPKuSZZ/mT5mZB6DyrIuuLYk5yFGUjzJqIbyC2pNxwVO9dYGb+2LNVDbLAwfawQKoK2Q96KpOlaLefnJ5a5nT1nMHUva4bWHcgyWVOPpYfVeEPg+aOeyqzlXQEEQqmX0fY5KuSDZdWJdkEMegzoRXucRbIaBjaOkoeG22YP8OqXeA+J2Vn8ZG1Ha5riUNhjDwnUXyhJPUA8rqKbaO6GsI8UfSbtygNXMXdCxxEkmJ1cnznmhoVqXKKMt2ODaLoV99GXt6Y8Go7Eh1CG2/wgw07BTJmj1PaZywlX05LmfkKN0yW0IOOeMqjjMV4EvTUoz8EjFHLpo9vxCiAodtaBX9UU1bsNP+ccFgctB8obcBAqkKC9Gv9k4E1pkEBqGLEkj/5xFFSJTnpZojwl+iLyEYiVRSFJzsZpC01ssKSXjOP9Q+BTMrLovl9fKkFRabiDRPGnq25+WF10bioUcaU5SstSeM7SjbNnnCr3vU0uJQI+8mYBRlPRu+OuvO5Tf4g9J3jXhzMhZ4XAA0W17baF4v/Uka4CVz23F2GNFaoEPVqkhC8+2U2GKnTjukbK/ZoZrGrqaHOTy7JJej7fVWr0k+/31S9eFfbCV0KQEGU+Ll5+DoXvbxqerJwWMa6UfCPUFNbke/dXDFNq3vQZsGpcQxefalMWx6F5kQiA9wSrKIy25BWfDTwvqxGhA8UWWlFPwPDyk/KYaih+vwkF2NnmXVfIctRUn/LxB7lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNAAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
70 |
+
"n": 4,
|
71 |
+
"_shape": [],
|
72 |
+
"dtype": "int64",
|
73 |
+
"_np_random": "RandomState(MT19937)"
|
74 |
+
},
|
75 |
+
"n_envs": 16,
|
76 |
+
"buffer_size": 1000000,
|
77 |
+
"batch_size": 32,
|
78 |
+
"learning_starts": 50000,
|
79 |
+
"tau": 1.0,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gradient_steps": 1,
|
82 |
+
"optimize_memory_usage": false,
|
83 |
+
"replay_buffer_class": {
|
84 |
+
":type:": "<class 'abc.ABCMeta'>",
|
85 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
86 |
+
"__module__": "stable_baselines3.common.buffers",
|
87 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
88 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f635e1d8040>",
|
89 |
+
"add": "<function ReplayBuffer.add at 0x7f635e1d80d0>",
|
90 |
+
"sample": "<function ReplayBuffer.sample at 0x7f635e1d8160>",
|
91 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f635e1d81f0>",
|
92 |
+
"__abstractmethods__": "frozenset()",
|
93 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f635e1d7380>"
|
94 |
+
},
|
95 |
+
"replay_buffer_kwargs": {},
|
96 |
+
"train_freq": {
|
97 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
98 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
99 |
+
},
|
100 |
+
"actor": null,
|
101 |
+
"use_sde_at_warmup": false,
|
102 |
+
"exploration_initial_eps": 1.0,
|
103 |
+
"exploration_final_eps": 0.05,
|
104 |
+
"exploration_fraction": 0.1,
|
105 |
+
"target_update_interval": 39,
|
106 |
+
"_n_calls": 626652,
|
107 |
+
"max_grad_norm": 10,
|
108 |
+
"exploration_rate": 0.05,
|
109 |
+
"batch_norm_stats": [],
|
110 |
+
"batch_norm_stats_target": [],
|
111 |
+
"exploration_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy45L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy45L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
114 |
+
}
|
115 |
+
}
|
DQN-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d09a5760590f15aa16aa0559cb0e17990d54cb460de8175c206970b2f0bafda
|
3 |
+
size 44975
|
DQN-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:347bbabfaa4618709705c07705471429fbea24a41f0c9e752c0be2e9fb15cc06
|
3 |
+
size 44033
|
DQN-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
DQN-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 84.43 +/- 73.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f635e174b80>", "_build": "<function DQNPolicy._build at 0x7f635e174c10>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f635e174ca0>", "forward": "<function DQNPolicy.forward at 0x7f635e174d30>", "_predict": "<function DQNPolicy._predict at 0x7f635e174dc0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f635e174e50>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f635e174ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f635e17b980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10000000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682613620571638570, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMizDxc41K60HRGMxcJrC+gwJE7KJrHswAAgD8AAIA/zQMjvnSOnD4qRSc9MJ67O6msI7xm4kk9AAAAAAAAAADNhPW8ASmSPxK0vb0pTxu+o5o6PfD3Xr0AAAAAAAAAAGaSrLyOMkc/YAHQPbX93739ycs9nd9muQAAAAAAAAAATfKgvcPBW7pnLEyz8pUvsCNrlLo1zc0zAACAPwAAgD8zbO08lEmHPd6eZj0GAla9ZQeCPVK6djgAAAAAAAAAAM3tjb2hkXo+JPWqPavjBL0vOSA8E/TCPAAAAAAAAAAAoDgqvg3sSz5AALa9MHjDvbV37LywJ2e9AAAAAAAAAADWVe0+8op7P9Vf9z29ARu+wbuZPnodZDwAAAAAAAAAADPBfbwoBbE+yjpGOmsRTr11p2g95kGOOwAAAAAAAAAAZrrIu+JKmD+s+ES9tRG5vew7FD0AL1o8AAAAAAAAAADNIEK+MBzxPsUXgz1bSBC9g3ezvPnJmTsAAAAAAAAAAOZGN72J2Aw/xoPEvIDOn72Y1U89+kFSvAAAAAAAAAAAmh/EvMNRfbr7dsyz+h5rLixnY7u4isQzAACAPwAAgD8zqpO9rN1gPoQ7Nj0BH1C94lLkPbCUQ70AAAAAAAAAAAblPb5PTD4+piH2PMV0CL0ATj29IQC3OgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 15353, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZHYWvVNnX0CUhpRSlIwBbJRN5gOMAXSUR0DOFkst5D7ZdX2UKGgGaAloD0MI7ded7jxhH0CUhpRSlGgVS+toFkdAzha5ga3qiXV9lChoBmgJaA9DCAvPS8XGTDdAlIaUUpRoFU3oA2gWR0DOFtk8TzundX2UKGgGaAloD0MIVRSvsrZNMkCUhpRSlGgVS+9oFkdAzhdswRGtp3V9lChoBmgJaA9DCPoq+djdJWhAlIaUUpRoFU2fA2gWR0DOF74LThHcdX2UKGgGaAloD0MIl3FTA81XNUCUhpRSlGgVS+1oFkdAzhiVkvK2a3V9lChoBmgJaA9DCPmFV5I8y0fAlIaUUpRoFU3oA2gWR0DOGPCup0fYdX2UKGgGaAloD0MIskeoGVK7aUCUhpRSlGgVTWQCaBZHQM4ZPbd8ArB1fZQoaAZoCWgPQwhOKa+V0JpeQJSGlFKUaBVNpANoFkdAzhnmHeJpFnV9lChoBmgJaA9DCFQdcjPcBVBAlIaUUpRoFU3oA2gWR0DOGmLofSx8dX2UKGgGaAloD0MIzAhvD0LeRUCUhpRSlGgVTegDaBZHQM4av0utfXx1fZQoaAZoCWgPQwg6rdug9nFDQJSGlFKUaBVN6ANoFkdAzhzKbXHzYnV9lChoBmgJaA9DCI4iaw2l3ilAlIaUUpRoFUvuaBZHQM4d/NCiRGN1fZQoaAZoCWgPQwhj0t9L4eEOQJSGlFKUaBVN6ANoFkdAzh6hl9SdfHV9lChoBmgJaA9DCHU7+8qDf2xAlIaUUpRoFU10AmgWR0DOHqMyJsO5dX2UKGgGaAloD0MIBmfw9wt3Y0CUhpRSlGgVTXIDaBZHQM4eruvllsh1fZQoaAZoCWgPQwgDzHwHv+hhQJSGlFKUaBVN5gNoFkdAziBNJ0W/J3V9lChoBmgJaA9DCFNA2v8AKmVAlIaUUpRoFU13A2gWR0DOIFmFYdQwdX2UKGgGaAloD0MITdpU3SNbKkCUhpRSlGgVTegDaBZHQM4iYekYXO51fZQoaAZoCWgPQwhsy4CzlMpGwJSGlFKUaBVN6ANoFkdAziNZTUiIL3V9lChoBmgJaA9DCO27IvjfEjXAlIaUUpRoFU3oA2gWR0DOJJW5DqnndX2UKGgGaAloD0MIYyZRL/iAOsCUhpRSlGgVTegDaBZHQM4lIURWcSZ1fZQoaAZoCWgPQwiFevoI/LtBwJSGlFKUaBVN6ANoFkdAziZUcNpdr3V9lChoBmgJaA9DCKG5TiMtXSTAlIaUUpRoFU3oA2gWR0DOJrjbWVeKdX2UKGgGaAloD0MImBk2ynoWaUCUhpRSlGgVTVIDaBZHQM4m9Ljghr51fZQoaAZoCWgPQwifceFASJhCQJSGlFKUaBVN6ANoFkdAzicFWf9P13V9lChoBmgJaA9DCGvwvioXWEPAlIaUUpRoFU3oA2gWR0DOJ61g+hXbdX2UKGgGaAloD0MItoKmJdYga0CUhpRSlGgVTTsCaBZHQM4nt+iSJTF1fZQoaAZoCWgPQwiLMhtkkiEnQJSGlFKUaBVN6ANoFkdAzin5oUzsQnV9lChoBmgJaA9DCHl2+daH2WtAlIaUUpRoFU1jAmgWR0DOKhxdyDIzdX2UKGgGaAloD0MIgxd9BWmSSkCUhpRSlGgVTegDaBZHQM4qyc+7lJZ1fZQoaAZoCWgPQwgP7WMFv20JwJSGlFKUaBVN6ANoFkdAzitaOz6acHV9lChoBmgJaA9DCFPqknGMwD7AlIaUUpRoFU3oA2gWR0DOK1vDaXa8dX2UKGgGaAloD0MIKqp+pfNdOsCUhpRSlGgVTegDaBZHQM4rZyVGCqZ1fZQoaAZoCWgPQwjpf7kWLUA0wJSGlFKUaBVN6ANoFkdAzizZeTFERnV9lChoBmgJaA9DCI4CRMGMlmhAlIaUUpRoFU1SAmgWR0DOLjUlLOAzdX2UKGgGaAloD0MIp5GWylu0YUCUhpRSlGgVTTEDaBZHQM4u4Nbs4T91fZQoaAZoCWgPQwh1BduIJ55eQJSGlFKUaBVNxwNoFkdAzi/wH/Lkj3V9lChoBmgJaA9DCBpQb0ZN8WZAlIaUUpRoFU0VA2gWR0DOMBTsByS3dX2UKGgGaAloD0MIww/Op45fTECUhpRSlGgVTegDaBZHQM4xnfXf6451fZQoaAZoCWgPQwjooEs49P1fQJSGlFKUaBVNfQNoFkdAzjMu6gdwN3V9lChoBmgJaA9DCFdAoZ4+/j7AlIaUUpRoFU3oA2gWR0DOM0MMoc7ydX2UKGgGaAloD0MIPGagMv4pQECUhpRSlGgVS/doFkdAzjNMbutwJnV9lChoBmgJaA9DCJChYweVPkTAlIaUUpRoFU3oA2gWR0DOM8X3YcvNdX2UKGgGaAloD0MIbtv3qL8+J8CUhpRSlGgVTegDaBZHQM404CG34Kx1fZQoaAZoCWgPQwj3d7ZHb3gLwJSGlFKUaBVL8GgWR0DONwBWDHwPdX2UKGgGaAloD0MIfuAqTyAMK0CUhpRSlGgVTegDaBZHQM44AWxyGSJ1fZQoaAZoCWgPQwghAg6hStUpwJSGlFKUaBVN6ANoFkdAzjgpvGZNPHV9lChoBmgJaA9DCE1oklhSkWZAlIaUUpRoFU2QA2gWR0DOODiC17Y1dX2UKGgGaAloD0MIeNUD5qHAYECUhpRSlGgVTbkDaBZHQM44RvM8ox51fZQoaAZoCWgPQwh79lympjtvQJSGlFKUaBVNagFoFkdAzjiLgIhQnHV9lChoBmgJaA9DCMKlY84zijzAlIaUUpRoFU3oA2gWR0DOOSJY/3WXdX2UKGgGaAloD0MIJ9pVSPmtPcCUhpRSlGgVTegDaBZHQM45KsQumJp1fZQoaAZoCWgPQwgv+Z/8Xe9qQJSGlFKUaBVNpgJoFkdAzjktEUCaJHV9lChoBmgJaA9DCJ33/3HCx2JAlIaUUpRoFU3CA2gWR0DOOay2BreqdX2UKGgGaAloD0MIUkZcAJqLbUCUhpRSlGgVTd8BaBZHQM46aeTmnwZ1fZQoaAZoCWgPQwioN6Pmq9JOQJSGlFKUaBVN6ANoFkdAzjrBmozeoHV9lChoBmgJaA9DCN7jTBO2zxLAlIaUUpRoFU3oA2gWR0DOOzDhxYJWdX2UKGgGaAloD0MIR+aRPxhAQkCUhpRSlGgVS/5oFkdAzjtF6xgRb3V9lChoBmgJaA9DCMxetp02T29AlIaUUpRoFU2lAWgWR0DOPCjfR/mUdX2UKGgGaAloD0MIY3yYvaylcECUhpRSlGgVTbwBaBZHQM49sz4tYjl1fZQoaAZoCWgPQwjvyFht/ncwQJSGlFKUaBVN6ANoFkdAzj4DdonKGXV9lChoBmgJaA9DCHZQiesYry7AlIaUUpRoFUvaaBZHQM4/MLMC9yt1fZQoaAZoCWgPQwhi3A2itQo2wJSGlFKUaBVN6ANoFkdAzj+PHOKO1nV9lChoBmgJaA9DCP2Es1vLpDLAlIaUUpRoFU3oA2gWR0DOQABfBvaUdX2UKGgGaAloD0MIUfcBSG1ubUCUhpRSlGgVTTECaBZHQM5C31qFh5R1fZQoaAZoCWgPQwgecF0xI9wMQJSGlFKUaBVN6ANoFkdAzkL3ZAY51nV9lChoBmgJaA9DCCnMe5xpHG5AlIaUUpRoFU2FAWgWR0DOQxo1YQrddX2UKGgGaAloD0MIgPEMGvqPJkCUhpRSlGgVTegDaBZHQM5ERJjc2zh1fZQoaAZoCWgPQwi1GachKvlhQJSGlFKUaBVN3QNoFkdAzkR2yhzvJHV9lChoBmgJaA9DCPoq+dhdAC1AlIaUUpRoFU3oA2gWR0DORHw2MsH0dX2UKGgGaAloD0MITfkQVI0SOECUhpRSlGgVTegDaBZHQM5FC02tMf11fZQoaAZoCWgPQwj2KFyPwmE/QJSGlFKUaBVN6ANoFkdAzkXehoM8YHV9lChoBmgJaA9DCKNcGr/wdG1AlIaUUpRoFU0tAmgWR0DORhhikO7QdX2UKGgGaAloD0MImrZ/ZaXpHECUhpRSlGgVTegDaBZHQM5GvBw2l2x1fZQoaAZoCWgPQwh+Oh4zUANBwJSGlFKUaBVN6ANoFkdAzkd+PZqVQnV9lChoBmgJaA9DCGUYd4Noc1xAlIaUUpRoFU2XA2gWR0DOR48wztTldX2UKGgGaAloD0MIlIPZBBjiNkCUhpRSlGgVTegDaBZHQM5Hx7yxzJZ1fZQoaAZoCWgPQwisVFBRdalnQJSGlFKUaBVNRQNoFkdAzklXvddmhHV9lChoBmgJaA9DCBhgH526+ijAlIaUUpRoFU0JAWgWR0DOSi0GgSOBdX2UKGgGaAloD0MIycfuAiXhNsCUhpRSlGgVTegDaBZHQM5Loe1SflJ1fZQoaAZoCWgPQwjDmsqisJRsQJSGlFKUaBVNQgJoFkdAzku0GorFwXV9lChoBmgJaA9DCEymCkYlGUrAlIaUUpRoFU3oA2gWR0DOTDre40/GdX2UKGgGaAloD0MIs34zMd0EZkCUhpRSlGgVTfECaBZHQM5M3g6Mir11fZQoaAZoCWgPQwhPH4E//BxmQJSGlFKUaBVN5gJoFkdAzk14o5PuX3V9lChoBmgJaA9DCK2E7pI4KxlAlIaUUpRoFU3oA2gWR0DOT38AeaKDdX2UKGgGaAloD0MIYeEkzR8TLUCUhpRSlGgVTegDaBZHQM5PkWNFSbZ1fZQoaAZoCWgPQwh4JclzfR8pQJSGlFKUaBVN6ANoFkdAzk+sZwXIl3V9lChoBmgJaA9DCOzbSUT4MWJAlIaUUpRoFU3PA2gWR0DOUDWEEkjYdX2UKGgGaAloD0MInz4Cf3jObkCUhpRSlGgVTa4BaBZHQM5QWYzJp351fZQoaAZoCWgPQwiqLXWQ16NkQJSGlFKUaBVNagNoFkdAzlBcN/e+EnV9lChoBmgJaA9DCDUNiuYBzBtAlIaUUpRoFU3oA2gWR0DOUHshouf3dX2UKGgGaAloD0MIlSu8y0UKSsCUhpRSlGgVS/NoFkdAzlCoLvTgEXV9lChoBmgJaA9DCL9FJ0utnyLAlIaUUpRoFU3oA2gWR0DOUfpMtbs4dX2UKGgGaAloD0MIxOv6BTu/YECUhpRSlGgVTbsDaBZHQM5SdumzjWF1fZQoaAZoCWgPQwgib7n6sSNAwJSGlFKUaBVN6ANoFkdAzlMRGG21D3V9lChoBmgJaA9DCPRRRlwALmxAlIaUUpRoFU0MAmgWR0DOUxzHU+cIdX2UKGgGaAloD0MIhzYAGxD1ZkCUhpRSlGgVTcoCaBZHQM5U6JfQa751fZQoaAZoCWgPQwgJ+aBns0prQJSGlFKUaBVNFQJoFkdAzlVKeYlY2nV9lChoBmgJaA9DCOhOsP86/z5AlIaUUpRoFU3oA2gWR0DOVdsx7AtWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 155469, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAK6q4mwkfbg3tqbAAL/0HzDGROpU92JjrnKQGHc0X+V9L8oU56iCBKZDD3gfC/ul2pl6OvyhgLhBbG1qX+uZPAQ2CDGpVrhqgkm5wHpROZ6YlyQd+MlUXoiQLOiMUmo9hBkPGemucIwU00atKyiREUz/YwwVnde255jy2WkCbdDmWKcb+vl74VJIhFtKioT+fbmr4qp5yZOkJlY6Py0UTUzihG9ZsyPL/1kFoho+UiZczMyhxIuA9Q5duOQ94QheFKzygMvKCxGaVD3UGIUfiZDqmj1Cy+d9EIA6CQjq4GtGjSnN+G6VgCg88k+LJyZdaKpY8CAt3Dn4vCb/ctZojN5u3JQbY2OAmPto5rkY8JqsqeI8T69xvN6lwQOhKtFKjZMxnlOG7AW7HXBg+PsczmcrfQuMZ+pz3wXS+qZrIHD7klG8xenHb2vwdwyT720RGL/lFiOhNAVFI62xxPjoogK21yTGHKkm2UkFM+PeDyZCB49+xl7UZ4LOePfaZIJjXPVnwSD48K8LVFoSl9/AwJtfd/uGA2ne+fRsXhOZSB2MC91+TgsZjqBzVloeg/OA9VlaLmg5Rmu2pj6ll2kZ/RnXsigEtdm4Euv/HYc3nrn3mQeMEpkeTCr+4j0/0sJOHNKe1vMKT3bYDh3sajmSv2lOWhe7xIqNYC3YAEw7RJ6VTAS6SM3Z12BnL/fjSCiJP1V0lLK1a3U788LqeEbyhnM+ddj6KwHSQ70NJYBq4BiLbdnz7oOpYQrvKb1VBpwtNMHg/bxWGHxlaDdU8Bd7hso71QsTcAcFQv98gUJkzaaL0/jQBImC1Flmi1evNrCLVGvM3W+htBQNocl+ZWfhli48n3O7eq0o2200JRHgyDrqyNBcfLSiuc0iMmqe2Xm8NH1dwdlnPFtYpHb87plvjSDD3NUt0RHkvn1AyKB44/JJdmbZvgDnAokrdVWrzT9mz8koEyddHZhbS2HXdxUJIY9cuaz3wMxwgOQ2EGzoCrFmo+Snx6/V76okGzLbOQ9jvB2QbeBhWejA1TDPffbM8dQGE4Arvl4eIpvnrKNKPhsI+OihbnjtEwnWXdE1CDf750NkAJOr8IICXoAsevZG4F2GvHB7y0MtPh9MtaSlkFfCWRixKggWQL8P06hZ/Lm4/FoewwnZAZ/+PuTIOCopd1UMahi5QueQd5qv0mOPPeaBaidRZyk3y6Xqvieuhp0wL4+pPCxvMi9m8vTeP7AgNpyD/WOYElTAMZidshdgsZfn+NVi+1RfqT8/Bm9TQTynK8r5frnj+YJF/xsGkZBmEjWapX/cqtcwVfps4Bw/BBIcD1RpXQeZ/c+YQjM5j+BUw6m8jp5p7RVRNJ5x2/ODzbJnknazfETlUMT8kX45Zn9FlgRfYnAhPlt3zErxrW02CPaSLQ7bD+akptCfSZdkklFMD39dGjuHsDAK/mkeXNL6Eqkiwo1fwyidyrvjv5xrUxXsz0p8yVtUNfRLk+JSFXtS59aCVk9VD2NOIZo8tCHQ70z8WRuhFDItRQSkw5+Oe8+1YQAKC/nhFSNvXQtFvFgO/NMDyLJ9PzNmAJfLEwXR/d3tctnejiJ56rvCEDDyFw61HlhQ1E03dpDZ5kHYrjF5X5/9imNHuKPF+Fo3hO4M2Icp5TvTz9YS0S8y8UWmTPx/+tSgprT6gTUfMOPawhrkDjtSThrUnjfAsIvncdvSM8689ePIwh0KvE48xM7dxGX96KlMci4pvxnD/BUpyl92H839WU8F6aNGRwYi8ldraREHow81Wp1s4bM6fxwwwbi0Bi31JWYJc8OrxaIG9/uvIFKv2Ah1X73nRgUWrpDXx2gnvaOhglMUY+GxEnPASQSxUM0++ViPCcgtMvPaFVQfKUXJNjrhTP0Z2SgRupTR/KUPjdBoXUMGy8vyc4cWb7kfwmXTtG/Q2aNuf1tcfedPMcvxi6GUnAQclowJRp6N3Ea1ld04MOlrWmWnBDcgsSedizMdxHT2YVPHTvv9frv35iRbZSe3jMRbn02pgthEcqSZNDCw82p/JSQqwFo83pg08xm2Abc4E15FeJ2eT06BOfWfU8ANGB96ybZkbI3kNNsUrSkwNcORzTZtFVZ8vNcrE7xS44v3Qur22zqNyWLyKVeRc3opPRi5T7vIMPsZAxxFfdobtftoOQ3VRSVRnEidjTcZMymJzVs5Sssn5KuCi2jiRP76rn5mQe0aytOiVkU++/InmuqChBLxM09NHME9/cutUQ6MDLcKdE8/yahiJqvB+YuX2gsHPdp/dGG/gN4OTuO2nyvS0Mg0IrQm2npCm3iJtgg+DjCw5AFlK7rfN792pU244GxVFESIzVA9Fx7epLnAsatg0OiOluQCgZ5LFf+mPfrzP3FBn8T6zfG6koibqFWcYADobgcX/5AT2wlbeO8YSprIAndeq0w66EEl6fP22CC7hTmitFPYEwOJ7T1Nsq66Ci4C5T4ls/BLLYGL/jvHpQ2Fw/8yekSjuhwSTKwanEYCcrHMnteR+enI3zociAIKtkvvdpNboA12v/mCBpWsaYUE8LWlgKDqBs75/Z+E9xkSyPATTUI8xBvRr1JAqaSofPKuSZZ/mT5mZB6DyrIuuLYk5yFGUjzJqIbyC2pNxwVO9dYGb+2LNVDbLAwfawQKoK2Q96KpOlaLefnJ5a5nT1nMHUva4bWHcgyWVOPpYfVeEPg+aOeyqzlXQEEQqmX0fY5KuSDZdWJdkEMegzoRXucRbIaBjaOkoeG22YP8OqXeA+J2Vn8ZG1Ha5riUNhjDwnUXyhJPUA8rqKbaO6GsI8UfSbtygNXMXdCxxEkmJ1cnznmhoVqXKKMt2ODaLoV99GXt6Y8Go7Eh1CG2/wgw07BTJmj1PaZywlX05LmfkKN0yW0IOOeMqjjMV4EvTUoz8EjFHLpo9vxCiAodtaBX9UU1bsNP+ccFgctB8obcBAqkKC9Gv9k4E1pkEBqGLEkj/5xFFSJTnpZojwl+iLyEYiVRSFJzsZpC01ssKSXjOP9Q+BTMrLovl9fKkFRabiDRPGnq25+WF10bioUcaU5SstSeM7SjbNnnCr3vU0uJQI+8mYBRlPRu+OuvO5Tf4g9J3jXhzMhZ4XAA0W17baF4v/Uka4CVz23F2GNFaoEPVqkhC8+2U2GKnTjukbK/ZoZrGrqaHOTy7JJej7fVWr0k+/31S9eFfbCV0KQEGU+Ll5+DoXvbxqerJwWMa6UfCPUFNbke/dXDFNq3vQZsGpcQxefalMWx6F5kQiA9wSrKIy25BWfDTwvqxGhA8UWWlFPwPDyk/KYaih+vwkF2NnmXVfIctRUn/LxB7lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNAAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f635e1d8040>", "add": "<function ReplayBuffer.add at 0x7f635e1d80d0>", "sample": "<function ReplayBuffer.sample at 0x7f635e1d8160>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f635e1d81f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f635e1d7380>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 39, "_n_calls": 626652, "max_grad_norm": 10, "exploration_rate": 0.05, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy45L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy45L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (244 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 84.43156895129763, "std_reward": 73.69787126690773, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-28T00:09:17.393855"}
|