File size: 2,149 Bytes
e1ba371
 
 
 
 
 
 
 
 
 
0b622d2
 
 
 
 
 
 
 
9d92348
 
e1ba371
 
 
 
 
 
 
0b622d2
 
 
 
e1ba371
 
 
 
 
 
0b622d2
e1ba371
 
 
0b622d2
e1ba371
 
 
0b622d2
e1ba371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b622d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: mit
base_model: openai-community/gpt2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: GPT2-small-LoRA-finetuned-amazon-reviews-en-classification
  results: []
datasets:
- mteb/amazon_reviews_multi
language:
- en
widget:
- text: It`s an amazing product
- text: I hate this product
- text: It's ok, but a bit expensive
library_name: transformers
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# GPT2-small-LoRA-finetuned-amazon-reviews-en-classification

This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on [mteb/amazon_reviews_multi](https://huggingface.co/datasets/mteb/amazon_reviews_multi) dataset.

It is the result of the post [Fine tunning SML](https://maximofn.com/lora/)

It achieves the following results on the evaluation set:
- Loss: 1.5203
- Accuracy: 0.3374

## Model description

This model provides classification of reviews in english

## Intended uses & limitations

Classifiction of reviews in english

## Training and evaluation data

It is training on [mteb/amazon_reviews_multi](https://huggingface.co/datasets/mteb/amazon_reviews_multi) dataset

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 400
- eval_batch_size: 400
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.3964        | 1.0   | 500  | 1.6029          | 0.2694   |
| 1.5727        | 2.0   | 1000 | 1.5317          | 0.3208   |
| 1.5344        | 3.0   | 1500 | 1.5118          | 0.3358   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1