MaziyarPanahi
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
3 |
+
inference: false
|
4 |
+
license: apache-2.0
|
5 |
+
model_creator: Mistral AI_
|
6 |
+
model_name: Mistral 7B Instruct v0.2
|
7 |
+
model_type: mistral
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
prompt_template: |
|
10 |
+
<s>[INST] {prompt} [/INST]
|
11 |
+
quantized_by: TheBloke
|
12 |
+
tags:
|
13 |
+
- finetuned
|
14 |
+
- mistral
|
15 |
+
- quantized
|
16 |
+
- 4-bit
|
17 |
+
---
|
18 |
+
# Description
|
19 |
+
|
20 |
+
This repo contains GPTQ model files for [Mistral AI_'s Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2).
|
21 |
+
|
22 |
+
## How to use
|
23 |
+
### Install the necessary packages
|
24 |
+
|
25 |
+
```
|
26 |
+
pip install --upgrade accelerate auto-gptq transformers
|
27 |
+
```
|
28 |
+
|
29 |
+
### Example Python code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import AutoTokenizer, pipeline
|
34 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
35 |
+
import torch
|
36 |
+
|
37 |
+
model_id = "MaziyarPanahi/Mistral-7B-Instruct-v0.2-GPTQ"
|
38 |
+
|
39 |
+
quantize_config = BaseQuantizeConfig(
|
40 |
+
bits=4,
|
41 |
+
group_size=128,
|
42 |
+
desc_act=False
|
43 |
+
)
|
44 |
+
|
45 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
46 |
+
model_id,
|
47 |
+
use_safetensors=True,
|
48 |
+
device="cuda:0",
|
49 |
+
quantize_config=quantize_config)
|
50 |
+
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
52 |
+
|
53 |
+
pipe = pipeline(
|
54 |
+
"text-generation",
|
55 |
+
model=model,
|
56 |
+
tokenizer=tokenizer,
|
57 |
+
max_new_tokens=512,
|
58 |
+
temperature=0.7,
|
59 |
+
top_p=0.95,
|
60 |
+
repetition_penalty=1.1
|
61 |
+
)
|
62 |
+
|
63 |
+
outputs = pipe("What is a large language model?")
|
64 |
+
print(outputs[0]["generated_text"])
|
65 |
+
```
|