File size: 4,525 Bytes
516151b 8d93013 c061b87 20ab2db 516151b 8d93013 516151b 1252ee4 516151b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
license: apache-2.0
tags:
- axolotl
- generated_from_trainer
- alpaca
- mixtral
- nous_hermes
- peft
- lora
- qlora
- adapter
- finetune
- transformers
base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
model-index:
- name: Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca
results: []
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT
model_type: MixtralForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
hub_model_id: MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca
hf_use_auth_token: true
load_in_4bit: true
strict: false
datasets:
- path: tatsu-lab/alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out
# save_safetensors: true
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
# - gate
- q_proj
# - k_proj
- v_proj
# - o_proj
# - w1
# - w2
# - w3
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca
This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT](https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0276
## How to use
**PEFT**
```python
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
config = PeftConfig.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
model = AutoModelForCausalLM.from_pretrained("NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT")
model = PeftModel.from_pretrained(model, "MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
```
**Transformers**
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-generation", model="MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/Nous-Hermes-2-Mixtral-8x7B-SFT-Alpaca")
```
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3912 | 0.01 | 1 | 1.3714 |
| 1.0321 | 0.25 | 45 | 1.0427 |
| 1.0312 | 0.51 | 90 | 1.0327 |
| 0.9917 | 0.76 | 135 | 1.0276 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.0 |