MehdiHosseiniMoghadam commited on
Commit
de9f2dc
·
1 Parent(s): 3ef0d9d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +197 -0
README.md ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ language: cs
4
+
5
+ datasets:
6
+
7
+ - common_voice
8
+
9
+ tags:
10
+
11
+ - audio
12
+
13
+ - automatic-speech-recognition
14
+
15
+ - speech
16
+
17
+ - xlsr-fine-tuning-week
18
+
19
+ license: apache-2.0
20
+
21
+ model-index:
22
+
23
+ - name: wav2vec2-large-xlsr-53-Czech by Mehdi Hosseini Moghadam
24
+
25
+ results:
26
+
27
+ - task:
28
+
29
+ name: Speech Recognition
30
+
31
+ type: automatic-speech-recognition
32
+
33
+ dataset:
34
+
35
+ name: Common Voice cs
36
+
37
+ type: common_voice
38
+
39
+ args: cs
40
+
41
+ metrics:
42
+
43
+ - name: Test WER
44
+
45
+ type: wer
46
+
47
+ value: 27.047806
48
+
49
+ ---
50
+
51
+ # wav2vec2-large-xlsr-53-Czech
52
+
53
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Czech using the [Common Voice](https://huggingface.co/datasets/common_voice)
54
+
55
+ When using this model, make sure that your speech input is sampled at 16kHz.
56
+
57
+ ## Usage
58
+
59
+ The model can be used directly (without a language model) as follows:
60
+
61
+ ```python
62
+
63
+ import torch
64
+
65
+ import torchaudio
66
+
67
+ from datasets import load_dataset
68
+
69
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
70
+
71
+ test_dataset = load_dataset("common_voice", "cs", split="test[:2%]")
72
+
73
+ processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech")
74
+
75
+ model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech")
76
+
77
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
78
+
79
+ # Preprocessing the datasets.
80
+
81
+ # We need to read the aduio files as arrays
82
+
83
+ def speech_file_to_array_fn(batch):
84
+
85
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
86
+
87
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
88
+
89
+ return batch
90
+
91
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
92
+
93
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
94
+
95
+ with torch.no_grad():
96
+
97
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
98
+
99
+ predicted_ids = torch.argmax(logits, dim=-1)
100
+
101
+ print("Prediction:", processor.batch_decode(predicted_ids))
102
+
103
+ print("Reference:", test_dataset["sentence"][:2])
104
+
105
+ ```
106
+
107
+ ## Evaluation
108
+
109
+ The model can be evaluated as follows on the Czech test data of Common Voice.
110
+
111
+ ```python
112
+
113
+ import torch
114
+
115
+ import torchaudio
116
+
117
+ from datasets import load_dataset, load_metric
118
+
119
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
120
+
121
+ import re
122
+
123
+ test_dataset = load_dataset("common_voice", "cs", split="test")
124
+
125
+ wer = load_metric("wer")
126
+
127
+ processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech")
128
+
129
+ model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Czech")
130
+
131
+ model.to("cuda")
132
+
133
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
134
+
135
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
136
+
137
+ # Preprocessing the datasets.
138
+
139
+ # We need to read the aduio files as arrays
140
+
141
+ def speech_file_to_array_fn(batch):
142
+
143
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
144
+
145
+
146
+
147
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
148
+
149
+
150
+
151
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
152
+
153
+
154
+
155
+ return batch
156
+
157
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
158
+
159
+ # Preprocessing the datasets.
160
+
161
+ # We need to read the aduio files as arrays
162
+
163
+ def evaluate(batch):
164
+
165
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
166
+
167
+
168
+
169
+ with torch.no_grad():
170
+
171
+
172
+
173
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
174
+
175
+
176
+
177
+ pred_ids = torch.argmax(logits, dim=-1)
178
+
179
+
180
+
181
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
182
+
183
+
184
+
185
+ return batch
186
+
187
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
188
+
189
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
190
+
191
+ ```
192
+
193
+ **Test Result**: 27.047806 %
194
+
195
+ ## Training
196
+
197
+ The Common Voice `train`, `validation` datasets were used for training.