Upload modeling_ovis.py
Browse files- modeling_ovis.py +625 -0
modeling_ovis.py
ADDED
@@ -0,0 +1,625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2024 AIDC-AI
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
# Unless required by applicable law or agreed to in writing, software
|
9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11 |
+
#
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import logging
|
16 |
+
import os
|
17 |
+
import importlib.metadata
|
18 |
+
|
19 |
+
from packaging import version
|
20 |
+
from importlib import import_module
|
21 |
+
from typing import List, Callable, Union, Optional, Dict
|
22 |
+
|
23 |
+
import PIL.Image
|
24 |
+
import torch
|
25 |
+
import transformers
|
26 |
+
from torch import Tensor
|
27 |
+
from torch.nn import init
|
28 |
+
from torch.nn.functional import softmax, gumbel_softmax, pad
|
29 |
+
from transformers.utils import is_flash_attn_2_available
|
30 |
+
from transformers import PreTrainedModel, AutoModel, AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
|
31 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
32 |
+
from transformers.cache_utils import HybridCache
|
33 |
+
from transformers.generation.utils import GenerateOutput
|
34 |
+
|
35 |
+
from .configuration_ovis import BaseVisualTokenizerConfig, SiglipVisualTokenizerConfig
|
36 |
+
from .configuration_ovis import OvisConfig, ConversationFormatter
|
37 |
+
from .configuration_ovis import IGNORE_ID, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, IMAGE_TOKEN_ID
|
38 |
+
|
39 |
+
|
40 |
+
# ----------------------------------------------------------------------
|
41 |
+
# Visual Tokenizer
|
42 |
+
# ----------------------------------------------------------------------
|
43 |
+
class BaseVisualTokenizer(PreTrainedModel):
|
44 |
+
base_model_prefix = "backbone"
|
45 |
+
main_input_name = None
|
46 |
+
_image_processor_class = None
|
47 |
+
_image_processor_kwargs = {}
|
48 |
+
_backbone_class = None
|
49 |
+
_backbone_name_or_path = None
|
50 |
+
|
51 |
+
def __init__(self, config: BaseVisualTokenizerConfig, *inputs, **kwargs):
|
52 |
+
super().__init__(config, *inputs, **kwargs)
|
53 |
+
self.image_processor = AutoImageProcessor.from_pretrained(kwargs['image_processor_name_or_path'])
|
54 |
+
self.backbone = AutoModel.from_config(self.config.backbone_config)
|
55 |
+
head_dim = self.config.vocab_size - len(IMAGE_INDICATOR_IDS) # reserved tokens for IMAGE_INDICATORS
|
56 |
+
self.head = torch.nn.Sequential(
|
57 |
+
torch.nn.Linear(
|
58 |
+
self.backbone.config.hidden_size * self.config.hidden_stride * self.config.hidden_stride, head_dim,
|
59 |
+
bias=False
|
60 |
+
),
|
61 |
+
torch.nn.LayerNorm(head_dim)
|
62 |
+
)
|
63 |
+
|
64 |
+
assert all((self.image_processor.do_resize,
|
65 |
+
not getattr(self.image_processor, 'do_center_crop', False),
|
66 |
+
self.image_processor.do_rescale,
|
67 |
+
self.image_processor.do_normalize
|
68 |
+
)), f"image_processor `{self.image_processor}` is not supported currently"
|
69 |
+
|
70 |
+
def get_backbone(self):
|
71 |
+
return self.backbone
|
72 |
+
|
73 |
+
def get_image_processor(self):
|
74 |
+
return self.image_processor
|
75 |
+
|
76 |
+
def mock_input(self):
|
77 |
+
height, width = self.get_image_size()
|
78 |
+
return torch.zeros(1, 3, height, width), self.construct_image_placeholders((1, 1))
|
79 |
+
|
80 |
+
def get_head(self):
|
81 |
+
return self.head
|
82 |
+
|
83 |
+
def get_image_size(self):
|
84 |
+
raise NotImplementedError
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def construct_image_placeholders(grid):
|
88 |
+
image_placeholders = [IMAGE_INDICATOR_IDS[0], IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS[1]]
|
89 |
+
if grid[0] * grid[1] > 1:
|
90 |
+
for r in range(grid[0]):
|
91 |
+
for c in range(grid[1]):
|
92 |
+
image_placeholders.append(IMAGE_ATOM_ID)
|
93 |
+
if c < grid[1] - 1:
|
94 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[2])
|
95 |
+
if r < grid[0] - 1:
|
96 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[3])
|
97 |
+
image_placeholders.append(IMAGE_INDICATOR_IDS[4])
|
98 |
+
return image_placeholders
|
99 |
+
|
100 |
+
def preprocess_image(self, image: PIL.Image.Image, max_partition=9, covering_threshold=0.9, convert_to_rgb=True):
|
101 |
+
def _preprocess(img: PIL.Image.Image, side):
|
102 |
+
# first resize and preprocess
|
103 |
+
w, h = img.size
|
104 |
+
if w == h:
|
105 |
+
new_width = new_height = side
|
106 |
+
elif w > h:
|
107 |
+
new_width = side
|
108 |
+
new_height = int(h / w * new_width)
|
109 |
+
else:
|
110 |
+
new_height = side
|
111 |
+
new_width = int(w / h * new_height)
|
112 |
+
new_size = dict(height=new_height, width=new_width)
|
113 |
+
pixel_values = self.image_processor.preprocess(img, size=new_size, return_tensors='pt')['pixel_values']
|
114 |
+
|
115 |
+
# then pad to square
|
116 |
+
square_values = torch.zeros([1, 3, side, side], dtype=pixel_values.dtype, device=pixel_values.device)
|
117 |
+
new_height, new_width = pixel_values.shape[2:]
|
118 |
+
if new_height == new_width:
|
119 |
+
square_values[:, :, :, :] = pixel_values
|
120 |
+
elif new_height > new_width:
|
121 |
+
from_index = (side - new_width) // 2
|
122 |
+
square_values[:, :, :, from_index:from_index + new_width] = pixel_values
|
123 |
+
else:
|
124 |
+
from_index = (side - new_height) // 2
|
125 |
+
square_values[:, :, from_index:from_index + new_height, :] = pixel_values
|
126 |
+
|
127 |
+
return square_values
|
128 |
+
|
129 |
+
def _partition(img, grid):
|
130 |
+
w, h = img.size
|
131 |
+
row_height = h // grid[0]
|
132 |
+
col_width = w // grid[1]
|
133 |
+
|
134 |
+
partition = []
|
135 |
+
for row in range(grid[0]):
|
136 |
+
for col in range(grid[1]):
|
137 |
+
left = col * col_width
|
138 |
+
upper = row * row_height
|
139 |
+
right = w if col == grid[1] - 1 else (col + 1) * col_width
|
140 |
+
lower = h if row == grid[0] - 1 else (row + 1) * row_height
|
141 |
+
partition.append((left, upper, right, lower))
|
142 |
+
|
143 |
+
return partition
|
144 |
+
|
145 |
+
def _covering_area(left, upper, right, lower, side):
|
146 |
+
w = right - left
|
147 |
+
h = lower - upper
|
148 |
+
w, h = max(w, h), min(w, h)
|
149 |
+
if w > side:
|
150 |
+
h = h / w * side
|
151 |
+
w = side
|
152 |
+
return w * h
|
153 |
+
|
154 |
+
def _get_best_grid(img, side):
|
155 |
+
img_area = img.size[0] * img.size[1]
|
156 |
+
|
157 |
+
candidate_grids = []
|
158 |
+
for i in range(1, max_partition + 1):
|
159 |
+
for j in range(1, max_partition + 1):
|
160 |
+
if i * j <= max_partition:
|
161 |
+
candidate_grids.append((i, j))
|
162 |
+
|
163 |
+
all_grids = []
|
164 |
+
good_grids = []
|
165 |
+
for grid in candidate_grids:
|
166 |
+
partition = _partition(img, grid)
|
167 |
+
covering_ratio = sum([_covering_area(*p, side) for p in partition]) / img_area
|
168 |
+
assert covering_ratio <= 1.0
|
169 |
+
all_grids.append((grid, covering_ratio))
|
170 |
+
if covering_ratio > covering_threshold:
|
171 |
+
good_grids.append((grid, covering_ratio))
|
172 |
+
|
173 |
+
if len(good_grids) > 0:
|
174 |
+
# pick the good partition with minimum #sub_images and break the tie using covering_ratio
|
175 |
+
return sorted(good_grids, key=lambda x: (x[0][0] * x[0][1], -x[1]))[0][0]
|
176 |
+
else:
|
177 |
+
# pick the partition with maximum covering_ratio and break the tie using #sub_images
|
178 |
+
return sorted(all_grids, key=lambda x: (-x[1], x[0][0] * x[0][1]))[0][0]
|
179 |
+
|
180 |
+
if convert_to_rgb and image.mode != 'RGB':
|
181 |
+
image = image.convert('RGB')
|
182 |
+
|
183 |
+
sides = self.get_image_size()
|
184 |
+
if sides[0] != sides[1]:
|
185 |
+
raise ValueError('get_image_size() returns non-square size')
|
186 |
+
side = sides[0]
|
187 |
+
grid = _get_best_grid(image, side)
|
188 |
+
partition = _partition(image, grid)
|
189 |
+
crops = [image.crop(p) for p in partition]
|
190 |
+
if len(crops) > 1:
|
191 |
+
crops.insert(0, image)
|
192 |
+
pixel_values = torch.cat([_preprocess(crop, side) for crop in crops], dim=0)
|
193 |
+
image_placeholders = self.construct_image_placeholders(grid)
|
194 |
+
return pixel_values, image_placeholders
|
195 |
+
|
196 |
+
def tokenize(self, logits):
|
197 |
+
def st_argmax(y_soft, dim): # straight-through softmax
|
198 |
+
index = y_soft.max(dim, keepdim=True)[1]
|
199 |
+
y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
200 |
+
ret = y_hard - y_soft.detach() + y_soft
|
201 |
+
return ret
|
202 |
+
|
203 |
+
if self.config.tokenize_function == 'softmax':
|
204 |
+
tokens = softmax(logits, dim=-1)
|
205 |
+
elif self.config.tokenize_function == 'gumbel_argmax':
|
206 |
+
tokens = gumbel_softmax(logits, tau=self.config.tau, hard=True)
|
207 |
+
elif self.config.tokenize_function == 'st_argmax':
|
208 |
+
tokens = st_argmax(logits, dim=-1)
|
209 |
+
else:
|
210 |
+
raise ValueError(
|
211 |
+
f'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax, but got {self.config.tokenize_function}')
|
212 |
+
return tokens
|
213 |
+
|
214 |
+
def encode(self, pixel_values):
|
215 |
+
output = self.backbone(pixel_values, output_hidden_states=True, return_dict=True)
|
216 |
+
features = output.hidden_states[-1]
|
217 |
+
if self.config.drop_cls_token:
|
218 |
+
features = features[:, 1:, :]
|
219 |
+
|
220 |
+
# merge number of `hidden_stride * hidden_stride` hidden states together to reduce token sequence length
|
221 |
+
# e.g., for hidden_stride=3, this leads to a token length reduction: 729 -> 81 for siglip
|
222 |
+
if self.config.hidden_stride > 1:
|
223 |
+
n, l, d = features.shape # this `d` maybe different from the above `d
|
224 |
+
sqrt_l = int(l ** 0.5)
|
225 |
+
assert sqrt_l ** 2 == l, "The token sequence length should be a perfect square."
|
226 |
+
features = features.reshape(n, sqrt_l, sqrt_l, d)
|
227 |
+
pl = (self.config.hidden_stride - (sqrt_l % self.config.hidden_stride)) % self.config.hidden_stride
|
228 |
+
features = pad(features, (0, 0, 0, pl, 0, pl), "constant", 0)
|
229 |
+
sqrt_l += pl
|
230 |
+
features = features.reshape(n, sqrt_l // self.config.hidden_stride, self.config.hidden_stride,
|
231 |
+
sqrt_l // self.config.hidden_stride, self.config.hidden_stride, d)
|
232 |
+
features = features.permute(0, 1, 3, 2, 4, 5) # [n, sqrt_l/hs, sqrt_l/hs, hs, hs, d]
|
233 |
+
features = features.flatten(3) # [n, sqrt_l/hs, sqrt_l/hs, hs*hs*d]
|
234 |
+
features = features.reshape(
|
235 |
+
n, -1, self.config.hidden_stride * self.config.hidden_stride * d)
|
236 |
+
|
237 |
+
return features
|
238 |
+
|
239 |
+
def forward(self, pixel_values) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
|
240 |
+
features = self.encode(pixel_values)
|
241 |
+
logits = self.head(features)
|
242 |
+
tokens = self.tokenize(logits)
|
243 |
+
# tokens' shape is [BatchSize, #Token, VocabSize-5], so padding with [BatchSize, #Token, 5], after
|
244 |
+
# which, tokens' shape should become [BatchSize, #Token, VocabSize]
|
245 |
+
batch_size, token_len, _ = tokens.shape
|
246 |
+
padding_tensor = torch.zeros(size=(batch_size, token_len, len(IMAGE_INDICATOR_IDS)),
|
247 |
+
dtype=tokens.dtype,
|
248 |
+
device=tokens.device,
|
249 |
+
layout=tokens.layout,
|
250 |
+
requires_grad=False)
|
251 |
+
tokens = torch.cat((tokens, padding_tensor), dim=2)
|
252 |
+
return tokens
|
253 |
+
|
254 |
+
|
255 |
+
class SiglipVisualTokenizer(BaseVisualTokenizer):
|
256 |
+
config_class = SiglipVisualTokenizerConfig
|
257 |
+
supports_gradient_checkpointing = True
|
258 |
+
_no_split_modules = ["SiglipVisionTransformer"]
|
259 |
+
_image_processor_class = SiglipImageProcessor
|
260 |
+
_image_processor_kwargs = {}
|
261 |
+
_backbone_class = SiglipVisionModel
|
262 |
+
_backbone_name_or_path = "google/siglip-so400m-patch14-384"
|
263 |
+
|
264 |
+
def get_image_size(self):
|
265 |
+
height = self.image_processor.size["height"]
|
266 |
+
width = self.image_processor.size["width"]
|
267 |
+
return height, width
|
268 |
+
|
269 |
+
|
270 |
+
AutoModel.register(SiglipVisualTokenizerConfig, SiglipVisualTokenizer)
|
271 |
+
|
272 |
+
|
273 |
+
# ----------------------------------------------------------------------
|
274 |
+
# Ovis
|
275 |
+
# ----------------------------------------------------------------------
|
276 |
+
class VisualEmbedding(torch.nn.Embedding):
|
277 |
+
def forward(self, visual_tokens: Tensor) -> Tensor:
|
278 |
+
if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
|
279 |
+
return super().forward(visual_tokens)
|
280 |
+
return torch.matmul(visual_tokens, self.weight)
|
281 |
+
|
282 |
+
def reset_parameters(self, mean=0., std=1.) -> None:
|
283 |
+
init.normal_(self.weight, mean=mean, std=std)
|
284 |
+
self._fill_padding_idx_with_zero()
|
285 |
+
|
286 |
+
|
287 |
+
class OvisPreTrainedModel(PreTrainedModel):
|
288 |
+
config_class = OvisConfig
|
289 |
+
base_model_prefix = "ovis"
|
290 |
+
|
291 |
+
|
292 |
+
class Ovis(OvisPreTrainedModel):
|
293 |
+
|
294 |
+
def __init__(self, config: OvisConfig, *inputs, **kwargs):
|
295 |
+
super().__init__(config, *inputs, **kwargs)
|
296 |
+
attn_kwargs = dict()
|
297 |
+
if self.config.llm_attn_implementation:
|
298 |
+
if self.config.llm_attn_implementation == "sdpa":
|
299 |
+
raise ValueError("`sdpa` is currently not supported")
|
300 |
+
elif self.config.llm_attn_implementation == "flash_attention_2":
|
301 |
+
assert (is_flash_attn_2_available() and
|
302 |
+
version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.6.3")), \
|
303 |
+
"Using `flash_attention_2` requires having `flash_attn>=2.6.3` installed."
|
304 |
+
attn_kwargs["attn_implementation"] = self.config.llm_attn_implementation
|
305 |
+
self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
|
306 |
+
assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
|
307 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
|
308 |
+
self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
|
309 |
+
image_processor_name_or_path=self.config.name_or_path)
|
310 |
+
self.vte = VisualEmbedding(
|
311 |
+
self.config.visual_tokenizer_config.vocab_size,
|
312 |
+
self.config.hidden_size,
|
313 |
+
device=self.visual_tokenizer.device,
|
314 |
+
dtype=self.visual_tokenizer.dtype
|
315 |
+
)
|
316 |
+
|
317 |
+
def _merge_modules(modules_list: tuple):
|
318 |
+
merged_modules = []
|
319 |
+
for modules in modules_list:
|
320 |
+
merged_modules.extend(modules if modules else [])
|
321 |
+
return merged_modules
|
322 |
+
|
323 |
+
self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
|
324 |
+
self._skip_keys_device_placement = self.llm._skip_keys_device_placement
|
325 |
+
self._keep_in_fp32_modules = _merge_modules(
|
326 |
+
(self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
|
327 |
+
self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
|
328 |
+
self.supports_gradient_checkpointing = all(
|
329 |
+
(self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
|
330 |
+
self._supports_flash_attn_2 = True
|
331 |
+
self._supports_sdpa = False
|
332 |
+
|
333 |
+
def get_text_tokenizer(self):
|
334 |
+
return self.text_tokenizer
|
335 |
+
|
336 |
+
def get_visual_tokenizer(self):
|
337 |
+
return self.visual_tokenizer
|
338 |
+
|
339 |
+
def tie_weights(self):
|
340 |
+
if not self.config.disable_tie_weight:
|
341 |
+
self.get_llm().tie_weights()
|
342 |
+
|
343 |
+
def get_llm(self):
|
344 |
+
return self.llm
|
345 |
+
|
346 |
+
def get_vte(self):
|
347 |
+
return self.vte
|
348 |
+
|
349 |
+
def get_wte(self):
|
350 |
+
return self.llm.get_input_embeddings()
|
351 |
+
|
352 |
+
def get_conversation_formatter(self) -> ConversationFormatter:
|
353 |
+
if getattr(self, 'conversation_formatter', None) is None:
|
354 |
+
self.conversation_formatter = getattr(import_module(".configuration_ovis", __package__),
|
355 |
+
self.config.conversation_formatter_class)(self.text_tokenizer)
|
356 |
+
return self.conversation_formatter
|
357 |
+
|
358 |
+
def forward(
|
359 |
+
self,
|
360 |
+
input_ids: torch.Tensor,
|
361 |
+
attention_mask: torch.Tensor,
|
362 |
+
labels: Optional[torch.Tensor],
|
363 |
+
pixel_values: List[Optional[torch.Tensor]],
|
364 |
+
**kwargs
|
365 |
+
):
|
366 |
+
assert self.training, "`forward` can only be used in training. For inference, use `generate`."
|
367 |
+
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
368 |
+
text_input_ids=input_ids,
|
369 |
+
text_attention_masks=attention_mask,
|
370 |
+
text_labels=labels,
|
371 |
+
pixel_values=pixel_values
|
372 |
+
)
|
373 |
+
return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)
|
374 |
+
|
375 |
+
def merge_multimodal(
|
376 |
+
self,
|
377 |
+
text_input_ids: torch.Tensor,
|
378 |
+
text_attention_masks: torch.Tensor,
|
379 |
+
text_labels: Optional[torch.Tensor],
|
380 |
+
pixel_values: List[Optional[torch.Tensor]],
|
381 |
+
left_padding: bool = False
|
382 |
+
):
|
383 |
+
input_device = text_input_ids.device
|
384 |
+
visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
|
385 |
+
visual_indicator_embeds = self.get_vte()(
|
386 |
+
torch.tensor(
|
387 |
+
list(range(visual_vocab_szie - 5, visual_vocab_szie)),
|
388 |
+
dtype=torch.long,
|
389 |
+
device=self.get_visual_tokenizer().device
|
390 |
+
)
|
391 |
+
).to(device=input_device)
|
392 |
+
|
393 |
+
if self.training:
|
394 |
+
# When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
|
395 |
+
# For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
|
396 |
+
# (see below in this function); so, the gradient will not be affected.
|
397 |
+
num_images = [x.shape[0] for x in pixel_values]
|
398 |
+
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
|
399 |
+
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
400 |
+
split_size_or_sections=num_images, dim=0)
|
401 |
+
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
402 |
+
split_size_or_sections=num_images, dim=0)
|
403 |
+
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
|
404 |
+
visual_input_ids]
|
405 |
+
else:
|
406 |
+
# When inference, sample can include only text with `None` pixel_value
|
407 |
+
num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
|
408 |
+
if sum(num_images) > 0:
|
409 |
+
visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
|
410 |
+
visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
|
411 |
+
split_size_or_sections=num_images, dim=0)
|
412 |
+
visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
|
413 |
+
split_size_or_sections=num_images, dim=0)
|
414 |
+
visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
|
415 |
+
visual_input_ids]
|
416 |
+
else:
|
417 |
+
# just placeholders
|
418 |
+
visual_embeds = [None] * len(num_images)
|
419 |
+
visual_input_ids = [None] * len(num_images)
|
420 |
+
visual_labels = [None] * len(num_images)
|
421 |
+
if text_labels is None:
|
422 |
+
text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)
|
423 |
+
|
424 |
+
input_embeds = []
|
425 |
+
attention_masks = []
|
426 |
+
labels = []
|
427 |
+
for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
|
428 |
+
text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
|
429 |
+
):
|
430 |
+
placeholder_token_mask = torch.lt(text_input_id, 0)
|
431 |
+
text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
|
432 |
+
for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
|
433 |
+
text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
|
434 |
+
image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
|
435 |
+
if len(image_atom_positions) > 0:
|
436 |
+
input_embed_parts = []
|
437 |
+
attention_mask_parts = []
|
438 |
+
label_parts = []
|
439 |
+
prev_image_atom_position = -1
|
440 |
+
for index, image_atom_position in enumerate(image_atom_positions):
|
441 |
+
input_embed_parts.append(
|
442 |
+
text_embed[prev_image_atom_position + 1:image_atom_position, :])
|
443 |
+
label_parts.append(
|
444 |
+
text_label[prev_image_atom_position + 1:image_atom_position])
|
445 |
+
attention_mask_parts.append(
|
446 |
+
text_attention_mask[prev_image_atom_position + 1:image_atom_position])
|
447 |
+
input_embed_parts.append(visual_embed[index])
|
448 |
+
attention_mask_parts.append(
|
449 |
+
torch.ones_like(visual_label[index], dtype=torch.bool))
|
450 |
+
label_parts.append(visual_label[index])
|
451 |
+
prev_image_atom_position = image_atom_position
|
452 |
+
if prev_image_atom_position + 1 < text_input_id.shape[0]:
|
453 |
+
input_embed_parts.append(
|
454 |
+
text_embed[prev_image_atom_position + 1:, :])
|
455 |
+
attention_mask_parts.append(
|
456 |
+
text_attention_mask[prev_image_atom_position + 1:])
|
457 |
+
label_parts.append(
|
458 |
+
text_label[prev_image_atom_position + 1:])
|
459 |
+
input_embed = torch.cat(input_embed_parts, dim=0)
|
460 |
+
attention_mask = torch.cat(attention_mask_parts, dim=0)
|
461 |
+
label = torch.cat(label_parts, dim=0)
|
462 |
+
else:
|
463 |
+
input_embed = text_embed
|
464 |
+
attention_mask = text_attention_mask
|
465 |
+
label = text_label
|
466 |
+
if self.training:
|
467 |
+
# Make visual_embed & visual_indicator_embeds involved in the backward graph,
|
468 |
+
# to be compatible with deepspeed zero and ddp.
|
469 |
+
input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
|
470 |
+
input_embeds.append(input_embed)
|
471 |
+
attention_masks.append(attention_mask)
|
472 |
+
labels.append(label)
|
473 |
+
|
474 |
+
if self.training: # padding to self.config.multimodal_max_length for increased training speed
|
475 |
+
padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0]))
|
476 |
+
input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0])
|
477 |
+
attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0])
|
478 |
+
labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0])
|
479 |
+
batch_input_embeds = self.pad_truncate_sequence(input_embeds, batch_first=True, padding_value=0.0, left_padding=left_padding)
|
480 |
+
batch_attention_mask = self.pad_truncate_sequence(attention_masks, batch_first=True, padding_value=False, left_padding=left_padding)
|
481 |
+
batch_labels = self.pad_truncate_sequence(labels, batch_first=True, padding_value=IGNORE_ID, left_padding=left_padding)
|
482 |
+
|
483 |
+
return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask
|
484 |
+
|
485 |
+
def pad_truncate_sequence(self, sequences: List[torch.Tensor], batch_first: bool = True, padding_value: float = 0.0, left_padding: bool = False) -> torch.Tensor:
|
486 |
+
if left_padding == False:
|
487 |
+
pad_sequence = torch.nn.utils.rnn.pad_sequence(sequences, batch_first=batch_first, padding_value=padding_value)
|
488 |
+
return pad_sequence[:,:self.config.multimodal_max_length]
|
489 |
+
else:
|
490 |
+
pad_sequence = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in sequences],batch_first=True, padding_value=padding_value).flip(dims=[1])
|
491 |
+
return pad_sequence[:,-self.config.multimodal_max_length:]
|
492 |
+
|
493 |
+
def preprocess_inputs(
|
494 |
+
self,
|
495 |
+
text_or_conversations: Union[List[Dict], str],
|
496 |
+
images: Optional[List[PIL.Image.Image]],
|
497 |
+
max_partition=9,
|
498 |
+
generation_preface='',
|
499 |
+
return_labels=False,
|
500 |
+
propagate_exception=True
|
501 |
+
):
|
502 |
+
# convert text to conversations
|
503 |
+
if isinstance(text_or_conversations, str):
|
504 |
+
conversations = [{
|
505 |
+
"from": "human",
|
506 |
+
"value": text_or_conversations
|
507 |
+
}]
|
508 |
+
elif isinstance(text_or_conversations, list):
|
509 |
+
conversations = text_or_conversations
|
510 |
+
else:
|
511 |
+
raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
|
512 |
+
f' but got {type(text_or_conversations)}')
|
513 |
+
|
514 |
+
# format conversations
|
515 |
+
prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
|
516 |
+
conversations, generation_preface=generation_preface)
|
517 |
+
|
518 |
+
# place image placeholders
|
519 |
+
input_ids = []
|
520 |
+
labels = []
|
521 |
+
pixel_values = []
|
522 |
+
invalidate_label = False
|
523 |
+
image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID]
|
524 |
+
last_image_token_index = -1
|
525 |
+
for i in range(len(image_token_indices)):
|
526 |
+
head = 0 if i == 0 else image_token_indices[i - 1] + 1
|
527 |
+
tail = image_token_indices[i]
|
528 |
+
last_image_token_index = tail
|
529 |
+
input_ids.extend(raw_input_ids[head:tail])
|
530 |
+
labels.extend(raw_labels[head:tail])
|
531 |
+
try:
|
532 |
+
image = images[i]
|
533 |
+
raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
|
534 |
+
image, max_partition=max_partition)
|
535 |
+
except Exception as e:
|
536 |
+
if propagate_exception:
|
537 |
+
raise e
|
538 |
+
logging.exception(e)
|
539 |
+
invalidate_label = True
|
540 |
+
raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
|
541 |
+
input_ids.extend(image_placeholders)
|
542 |
+
labels.extend([IGNORE_ID] * len(image_placeholders))
|
543 |
+
pixel_values.append(raw_pixel_values)
|
544 |
+
input_ids.extend(raw_input_ids[last_image_token_index + 1:])
|
545 |
+
labels.extend(raw_labels[last_image_token_index + 1:])
|
546 |
+
|
547 |
+
# return tensors
|
548 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
549 |
+
labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
|
550 |
+
pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None
|
551 |
+
|
552 |
+
if return_labels:
|
553 |
+
return prompt, input_ids, pixel_values, labels
|
554 |
+
else:
|
555 |
+
return prompt, input_ids, pixel_values
|
556 |
+
|
557 |
+
def save_pretrained(
|
558 |
+
self,
|
559 |
+
save_directory: Union[str, os.PathLike],
|
560 |
+
is_main_process: bool = True,
|
561 |
+
state_dict: Optional[dict] = None,
|
562 |
+
save_function: Callable = torch.save,
|
563 |
+
push_to_hub: bool = False,
|
564 |
+
max_shard_size: Union[int, str] = "5GB",
|
565 |
+
safe_serialization: bool = True,
|
566 |
+
variant: Optional[str] = None,
|
567 |
+
token: Optional[Union[str, bool]] = None,
|
568 |
+
save_peft_format: bool = True,
|
569 |
+
**kwargs
|
570 |
+
):
|
571 |
+
super().save_pretrained(save_directory,
|
572 |
+
is_main_process=is_main_process,
|
573 |
+
state_dict=state_dict,
|
574 |
+
save_function=save_function,
|
575 |
+
safe_serialization=safe_serialization)
|
576 |
+
self.get_text_tokenizer().save_pretrained(save_directory)
|
577 |
+
self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)
|
578 |
+
|
579 |
+
def _get_hybrid_cache_for_llm(self, batch_size: int, max_cache_len: int):
|
580 |
+
cache_cls = HybridCache
|
581 |
+
llm = self.get_llm()
|
582 |
+
|
583 |
+
need_new_cache = (
|
584 |
+
not hasattr(llm, "_cache")
|
585 |
+
or (not isinstance(llm._cache, cache_cls))
|
586 |
+
or llm._cache.batch_size != batch_size
|
587 |
+
or llm._cache.max_cache_len < max_cache_len
|
588 |
+
)
|
589 |
+
|
590 |
+
if need_new_cache:
|
591 |
+
if hasattr(llm.config, "_pre_quantization_dtype"):
|
592 |
+
cache_dtype = llm.config._pre_quantization_dtype
|
593 |
+
else:
|
594 |
+
cache_dtype = llm.dtype
|
595 |
+
llm._cache = cache_cls(
|
596 |
+
config=llm.config,
|
597 |
+
batch_size=batch_size,
|
598 |
+
max_cache_len=max_cache_len,
|
599 |
+
device=llm.device,
|
600 |
+
dtype=cache_dtype,
|
601 |
+
)
|
602 |
+
else:
|
603 |
+
llm._cache.reset()
|
604 |
+
return llm._cache
|
605 |
+
|
606 |
+
# TODO: support batch generation
|
607 |
+
def generate(
|
608 |
+
self,
|
609 |
+
inputs: Optional[torch.Tensor] = None,
|
610 |
+
**kwargs
|
611 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
612 |
+
_, inputs_embeds, labels, attention_mask = self.merge_multimodal(
|
613 |
+
text_input_ids=inputs,
|
614 |
+
text_attention_masks=kwargs.pop('attention_mask'),
|
615 |
+
text_labels=None,
|
616 |
+
pixel_values=kwargs.pop('pixel_values'),
|
617 |
+
left_padding=True
|
618 |
+
)
|
619 |
+
if getattr(self.generation_config, 'cache_implementation') == 'hybrid': # mainly for Gemma2
|
620 |
+
kwargs['past_key_values'] = self._get_hybrid_cache_for_llm(
|
621 |
+
getattr(kwargs, "num_beams", inputs_embeds.shape[0]), kwargs['max_new_tokens'] + inputs_embeds.shape[-2])
|
622 |
+
self.get_llm()._supports_cache_class = True
|
623 |
+
kwargs['cache_implementation'] = None
|
624 |
+
|
625 |
+
return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
|