Text Generation
Transformers
Safetensors
English
qwen2
conversational
text-generation-inference
Inference Endpoints
File size: 1,703 Bytes
e0a483d
 
bffed11
 
 
543ee2a
bffed11
 
 
 
 
e0a483d
 
bffed11
e0a483d
9742ebb
e0a483d
bffed11
e0a483d
543ee2a
 
bffed11
 
 
e0a483d
 
 
bffed11
e0a483d
bffed11
 
 
e0a483d
bffed11
543ee2a
 
e0a483d
bffed11
543ee2a
bb12b6b
9742ebb
 
 
 
 
bb12b6b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
library_name: transformers
license: apache-2.0
datasets:
- monology/pile-uncopyrighted
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---

# MinPLM-QWen-200M

[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)

**MiniPLM-QWen-200M** is a 200M model with QWen achitecture pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial QWen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model.

We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000">
</p>

## Evaluation

MiniPLM models achieves better performance given the same computation and scales well across model sizes:

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
</p>

## Baseline Models
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-Qwen-200M)
+ [VanillaKD](https://huggingface.co/MiniLLM/VanillaKD-Pretrain-Qwen-200M)

## Citation

```bibtex
@article{miniplm,
    title={MiniPLM: Knowledge Distillation for Pre-Training Language Models}, 
    author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
    journal={arXiv preprint arXiv:2410.17215},
    year={2024}
}
```