File size: 1,703 Bytes
e0a483d bffed11 543ee2a bffed11 e0a483d bffed11 e0a483d 9742ebb e0a483d bffed11 e0a483d 543ee2a bffed11 e0a483d bffed11 e0a483d bffed11 e0a483d bffed11 543ee2a e0a483d bffed11 543ee2a bb12b6b 9742ebb bb12b6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
library_name: transformers
license: apache-2.0
datasets:
- monology/pile-uncopyrighted
- MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
# MinPLM-QWen-200M
[paper](https://arxiv.org/abs/2410.17215) | [code](https://github.com/thu-coai/MiniPLM)
**MiniPLM-QWen-200M** is a 200M model with QWen achitecture pre-trained from scratch on [the Pile](https://huggingface.co/datasets/monology/pile-uncopyrighted) using the MiniPLM knowledge distillation framework with the [offcial QWen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) as the teacher model.
We also open-source the [pre-training corpus](https://huggingface.co/datasets/MiniLLM/pile-diff_samp-qwen_1.8B-qwen_104M-r0.5) refined by Difference Sampling in MiniPLM for reproducibility.
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/2BqT0NgkmIXYlktovw9kG.png" width="1000">
</p>
## Evaluation
MiniPLM models achieves better performance given the same computation and scales well across model sizes:
<p align='left'>
<img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/EOYzajQcwQFT5PobqL3j0.png" width="1000">
</p>
## Baseline Models
+ [Conventional Pre-Training](https://huggingface.co/MiniLLM/Pretrain-Qwen-200M)
+ [VanillaKD](https://huggingface.co/MiniLLM/VanillaKD-Pretrain-Qwen-200M)
## Citation
```bibtex
@article{miniplm,
title={MiniPLM: Knowledge Distillation for Pre-Training Language Models},
author={Yuxian Gu and Hao Zhou and Fandong Meng and Jie Zhou and Minlie Huang},
journal={arXiv preprint arXiv:2410.17215},
year={2024}
}
``` |