lrl-modelcloud commited on
Commit
1a6cf10
·
verified ·
1 Parent(s): 7f2a75f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ base_model:
7
+ - Qwen/QwQ-32B-Preview
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - gptqmodel
11
+ - modelcloud
12
+ - chat
13
+ - qwen2
14
+ - qwq
15
+ - instruct
16
+ - int4
17
+ - gptq
18
+ - 4bit
19
+ ---
20
+
21
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/2oH8KNg_qFoi7BQtxv9hr.png)
22
+
23
+ This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
24
+
25
+ - **bits**: 4
26
+ - **dynamic**: null
27
+ - **group_size**: 32
28
+ - **desc_act**: true
29
+ - **static_groups**: false
30
+ - **sym**: true
31
+ - **lm_head**: false
32
+ - **true_sequential**: true
33
+ - **quant_method**: "gptq"
34
+ - **checkpoint_format**: "gptq"
35
+ - **meta**:
36
+ - **quantizer**: gptqmodel:1.4.4
37
+ - **uri**: https://github.com/modelcloud/gptqmodel
38
+ - **damp_percent**: 0.1
39
+ - **damp_auto_increment**: 0.0015
40
+
41
+
42
+ ## Example:
43
+ ```python
44
+ from transformers import AutoTokenizer
45
+ from gptqmodel import GPTQModel
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained("ModelCloud/QwQ-32B-Preview-gptqmodel-4bit-vortex-v2")
48
+ model = GPTQModel.load("ModelCloud/QwQ-32B-Preview-gptqmodel-4bit-vortex-v2")
49
+
50
+ messages = [
51
+ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
52
+ {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
53
+ ]
54
+ input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
55
+
56
+ outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
57
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
58
+
59
+ print(result)
60
+ ```