MohamedAshraf701 commited on
Commit
3ecf4e9
·
verified ·
1 Parent(s): e3eecbe

Upload fine-tuned model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,400 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:44072
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: Men
14
+ sentences:
15
+ - Casual
16
+ - Summer
17
+ - Cream
18
+ - Timberland Men's Madbury Convertible Off White Pant
19
+ - Apparel
20
+ - Track Pants
21
+ - Bottomwear
22
+ - source_sentence: Women
23
+ sentences:
24
+ - Fall
25
+ - Brown
26
+ - Casual
27
+ - Accessories
28
+ - Allen Solly Woman Women Brown Pendant
29
+ - Jewellery
30
+ - Pendant
31
+ - source_sentence: Men
32
+ sentences:
33
+ - Tshirts
34
+ - White
35
+ - Casual
36
+ - Apparel
37
+ - Summer
38
+ - Scullers Men White Striped T-shirt
39
+ - Topwear
40
+ - source_sentence: Women
41
+ sentences:
42
+ - Handbags
43
+ - Summer
44
+ - Accessories
45
+ - Brown
46
+ - Casual
47
+ - Lino Perros Women Brown Handbag
48
+ - Bags
49
+ - source_sentence: Boys
50
+ sentences:
51
+ - Grey
52
+ - Apparel
53
+ - Topwear
54
+ - Gini and Jony Boys Around The World Grey T-shirt
55
+ - Tshirts
56
+ - Summer
57
+ - Casual
58
+ ---
59
+
60
+ # SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
61
+
62
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
63
+
64
+ ## Model Details
65
+
66
+ ### Model Description
67
+ - **Model Type:** Sentence Transformer
68
+ - **Base model:** [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1) <!-- at revision 2430568290bb832d22ad5064f44dd86cf0240142 -->
69
+ - **Maximum Sequence Length:** 512 tokens
70
+ - **Output Dimensionality:** 384 tokens
71
+ - **Similarity Function:** Cosine Similarity
72
+ <!-- - **Training Dataset:** Unknown -->
73
+ <!-- - **Language:** Unknown -->
74
+ <!-- - **License:** Unknown -->
75
+
76
+ ### Model Sources
77
+
78
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
79
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
80
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
81
+
82
+ ### Full Model Architecture
83
+
84
+ ```
85
+ SentenceTransformer(
86
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
87
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
88
+ (2): Normalize()
89
+ )
90
+ ```
91
+
92
+ ## Usage
93
+
94
+ ### Direct Usage (Sentence Transformers)
95
+
96
+ First install the Sentence Transformers library:
97
+
98
+ ```bash
99
+ pip install -U sentence-transformers
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+ ```python
104
+ from sentence_transformers import SentenceTransformer
105
+
106
+ # Download from the 🤗 Hub
107
+ model = SentenceTransformer("sentence_transformers_model_id")
108
+ # Run inference
109
+ sentences = [
110
+ 'Boys',
111
+ 'Apparel',
112
+ 'Topwear',
113
+ ]
114
+ embeddings = model.encode(sentences)
115
+ print(embeddings.shape)
116
+ # [3, 384]
117
+
118
+ # Get the similarity scores for the embeddings
119
+ similarities = model.similarity(embeddings, embeddings)
120
+ print(similarities.shape)
121
+ # [3, 3]
122
+ ```
123
+
124
+ <!--
125
+ ### Direct Usage (Transformers)
126
+
127
+ <details><summary>Click to see the direct usage in Transformers</summary>
128
+
129
+ </details>
130
+ -->
131
+
132
+ <!--
133
+ ### Downstream Usage (Sentence Transformers)
134
+
135
+ You can finetune this model on your own dataset.
136
+
137
+ <details><summary>Click to expand</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Out-of-Scope Use
144
+
145
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
146
+ -->
147
+
148
+ <!--
149
+ ## Bias, Risks and Limitations
150
+
151
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
152
+ -->
153
+
154
+ <!--
155
+ ### Recommendations
156
+
157
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
158
+ -->
159
+
160
+ ## Training Details
161
+
162
+ ### Training Dataset
163
+
164
+ #### Unnamed Dataset
165
+
166
+
167
+ * Size: 44,072 training samples
168
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, <code>sentence_2</code>, <code>sentence_3</code>, <code>sentence_4</code>, <code>sentence_5</code>, <code>sentence_6</code>, and <code>sentence_7</code>
169
+ * Approximate statistics based on the first 1000 samples:
170
+ | | sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 |
171
+ |:--------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
172
+ | type | string | string | string | string | string | string | string | string |
173
+ | details | <ul><li>min: 3 tokens</li><li>mean: 3.11 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.27 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.62 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.9 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.07 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.12 tokens</li><li>max: 24 tokens</li></ul> |
174
+ * Samples:
175
+ | sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 |
176
+ |:------------------|:---------------------|:---------------------|:---------------------|:-------------------|:--------------------|:--------------------|:----------------------------------------------------|
177
+ | <code>Boys</code> | <code>Apparel</code> | <code>Topwear</code> | <code>Tshirts</code> | <code>Blue</code> | <code>Summer</code> | <code>Casual</code> | <code>Mr.Men Boys A Lot Of Work Blue T-shirt</code> |
178
+ | <code>Men</code> | <code>Apparel</code> | <code>Topwear</code> | <code>Shirts</code> | <code>Blue</code> | <code>Fall</code> | <code>Casual</code> | <code>Locomotive Men Check Blue Shirt</code> |
179
+ | <code>Men</code> | <code>Apparel</code> | <code>Topwear</code> | <code>Shirts</code> | <code>Black</code> | <code>Fall</code> | <code>Formal</code> | <code>Arrow Men Stripes Black Shirts</code> |
180
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
181
+ ```json
182
+ {
183
+ "scale": 20.0,
184
+ "similarity_fct": "cos_sim"
185
+ }
186
+ ```
187
+
188
+ ### Training Hyperparameters
189
+ #### Non-Default Hyperparameters
190
+
191
+ - `per_device_train_batch_size`: 64
192
+ - `per_device_eval_batch_size`: 64
193
+ - `num_train_epochs`: 20
194
+ - `multi_dataset_batch_sampler`: round_robin
195
+
196
+ #### All Hyperparameters
197
+ <details><summary>Click to expand</summary>
198
+
199
+ - `overwrite_output_dir`: False
200
+ - `do_predict`: False
201
+ - `eval_strategy`: no
202
+ - `prediction_loss_only`: True
203
+ - `per_device_train_batch_size`: 64
204
+ - `per_device_eval_batch_size`: 64
205
+ - `per_gpu_train_batch_size`: None
206
+ - `per_gpu_eval_batch_size`: None
207
+ - `gradient_accumulation_steps`: 1
208
+ - `eval_accumulation_steps`: None
209
+ - `torch_empty_cache_steps`: None
210
+ - `learning_rate`: 5e-05
211
+ - `weight_decay`: 0.0
212
+ - `adam_beta1`: 0.9
213
+ - `adam_beta2`: 0.999
214
+ - `adam_epsilon`: 1e-08
215
+ - `max_grad_norm`: 1
216
+ - `num_train_epochs`: 20
217
+ - `max_steps`: -1
218
+ - `lr_scheduler_type`: linear
219
+ - `lr_scheduler_kwargs`: {}
220
+ - `warmup_ratio`: 0.0
221
+ - `warmup_steps`: 0
222
+ - `log_level`: passive
223
+ - `log_level_replica`: warning
224
+ - `log_on_each_node`: True
225
+ - `logging_nan_inf_filter`: True
226
+ - `save_safetensors`: True
227
+ - `save_on_each_node`: False
228
+ - `save_only_model`: False
229
+ - `restore_callback_states_from_checkpoint`: False
230
+ - `no_cuda`: False
231
+ - `use_cpu`: False
232
+ - `use_mps_device`: False
233
+ - `seed`: 42
234
+ - `data_seed`: None
235
+ - `jit_mode_eval`: False
236
+ - `use_ipex`: False
237
+ - `bf16`: False
238
+ - `fp16`: False
239
+ - `fp16_opt_level`: O1
240
+ - `half_precision_backend`: auto
241
+ - `bf16_full_eval`: False
242
+ - `fp16_full_eval`: False
243
+ - `tf32`: None
244
+ - `local_rank`: 0
245
+ - `ddp_backend`: None
246
+ - `tpu_num_cores`: None
247
+ - `tpu_metrics_debug`: False
248
+ - `debug`: []
249
+ - `dataloader_drop_last`: False
250
+ - `dataloader_num_workers`: 0
251
+ - `dataloader_prefetch_factor`: None
252
+ - `past_index`: -1
253
+ - `disable_tqdm`: False
254
+ - `remove_unused_columns`: True
255
+ - `label_names`: None
256
+ - `load_best_model_at_end`: False
257
+ - `ignore_data_skip`: False
258
+ - `fsdp`: []
259
+ - `fsdp_min_num_params`: 0
260
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
261
+ - `fsdp_transformer_layer_cls_to_wrap`: None
262
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
263
+ - `deepspeed`: None
264
+ - `label_smoothing_factor`: 0.0
265
+ - `optim`: adamw_torch
266
+ - `optim_args`: None
267
+ - `adafactor`: False
268
+ - `group_by_length`: False
269
+ - `length_column_name`: length
270
+ - `ddp_find_unused_parameters`: None
271
+ - `ddp_bucket_cap_mb`: None
272
+ - `ddp_broadcast_buffers`: False
273
+ - `dataloader_pin_memory`: True
274
+ - `dataloader_persistent_workers`: False
275
+ - `skip_memory_metrics`: True
276
+ - `use_legacy_prediction_loop`: False
277
+ - `push_to_hub`: False
278
+ - `resume_from_checkpoint`: None
279
+ - `hub_model_id`: None
280
+ - `hub_strategy`: every_save
281
+ - `hub_private_repo`: False
282
+ - `hub_always_push`: False
283
+ - `gradient_checkpointing`: False
284
+ - `gradient_checkpointing_kwargs`: None
285
+ - `include_inputs_for_metrics`: False
286
+ - `eval_do_concat_batches`: True
287
+ - `fp16_backend`: auto
288
+ - `push_to_hub_model_id`: None
289
+ - `push_to_hub_organization`: None
290
+ - `mp_parameters`:
291
+ - `auto_find_batch_size`: False
292
+ - `full_determinism`: False
293
+ - `torchdynamo`: None
294
+ - `ray_scope`: last
295
+ - `ddp_timeout`: 1800
296
+ - `torch_compile`: False
297
+ - `torch_compile_backend`: None
298
+ - `torch_compile_mode`: None
299
+ - `dispatch_batches`: None
300
+ - `split_batches`: None
301
+ - `include_tokens_per_second`: False
302
+ - `include_num_input_tokens_seen`: False
303
+ - `neftune_noise_alpha`: None
304
+ - `optim_target_modules`: None
305
+ - `batch_eval_metrics`: False
306
+ - `eval_on_start`: False
307
+ - `use_liger_kernel`: False
308
+ - `eval_use_gather_object`: False
309
+ - `batch_sampler`: batch_sampler
310
+ - `multi_dataset_batch_sampler`: round_robin
311
+
312
+ </details>
313
+
314
+ ### Training Logs
315
+ | Epoch | Step | Training Loss |
316
+ |:-------:|:-----:|:-------------:|
317
+ | 0.7257 | 500 | 4.593 |
318
+ | 1.4514 | 1000 | 4.1126 |
319
+ | 2.1771 | 1500 | 4.1057 |
320
+ | 2.9028 | 2000 | 4.1028 |
321
+ | 3.6284 | 2500 | 4.1026 |
322
+ | 4.3541 | 3000 | 4.1014 |
323
+ | 5.0798 | 3500 | 4.1015 |
324
+ | 5.8055 | 4000 | 4.1019 |
325
+ | 6.5312 | 4500 | 4.1001 |
326
+ | 7.2569 | 5000 | 4.1009 |
327
+ | 7.9826 | 5500 | 4.1001 |
328
+ | 8.7083 | 6000 | 4.0995 |
329
+ | 9.4340 | 6500 | 4.099 |
330
+ | 10.1597 | 7000 | 4.0995 |
331
+ | 10.8853 | 7500 | 4.0995 |
332
+ | 11.6110 | 8000 | 4.1004 |
333
+ | 12.3367 | 8500 | 4.099 |
334
+ | 13.0624 | 9000 | 4.0997 |
335
+ | 13.7881 | 9500 | 4.0994 |
336
+ | 14.5138 | 10000 | 4.0994 |
337
+ | 15.2395 | 10500 | 4.0992 |
338
+ | 15.9652 | 11000 | 4.0993 |
339
+ | 16.6909 | 11500 | 4.0986 |
340
+ | 17.4165 | 12000 | 4.0973 |
341
+ | 18.1422 | 12500 | 4.0993 |
342
+ | 18.8679 | 13000 | 4.0984 |
343
+ | 19.5936 | 13500 | 4.0992 |
344
+
345
+
346
+ ### Framework Versions
347
+ - Python: 3.12.6
348
+ - Sentence Transformers: 3.1.1
349
+ - Transformers: 4.45.1
350
+ - PyTorch: 2.4.1
351
+ - Accelerate: 0.34.2
352
+ - Datasets: 3.0.1
353
+ - Tokenizers: 0.20.0
354
+
355
+ ## Citation
356
+
357
+ ### BibTeX
358
+
359
+ #### Sentence Transformers
360
+ ```bibtex
361
+ @inproceedings{reimers-2019-sentence-bert,
362
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
363
+ author = "Reimers, Nils and Gurevych, Iryna",
364
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
365
+ month = "11",
366
+ year = "2019",
367
+ publisher = "Association for Computational Linguistics",
368
+ url = "https://arxiv.org/abs/1908.10084",
369
+ }
370
+ ```
371
+
372
+ #### MultipleNegativesRankingLoss
373
+ ```bibtex
374
+ @misc{henderson2017efficient,
375
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
376
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
377
+ year={2017},
378
+ eprint={1705.00652},
379
+ archivePrefix={arXiv},
380
+ primaryClass={cs.CL}
381
+ }
382
+ ```
383
+
384
+ <!--
385
+ ## Glossary
386
+
387
+ *Clearly define terms in order to be accessible across audiences.*
388
+ -->
389
+
390
+ <!--
391
+ ## Model Card Authors
392
+
393
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
394
+ -->
395
+
396
+ <!--
397
+ ## Model Card Contact
398
+
399
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
400
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.4.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da4f911198a75f628278b25b6f2e9d7caa8d1465a0e6ac55c62e817b0382626d
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 250,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff