File size: 2,556 Bytes
2795f36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
language:
- fa
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper small- Mohammad Khosravi
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: fa
      split: None
      args: 'config: fa, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 105.3763440860215
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper small- Mohammad Khosravi

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0832
- Wer: 105.3763

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer      |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log        | 1.4286  | 10   | 1.9791          | 109.6774 |
| No log        | 2.8571  | 20   | 1.6973          | 107.5269 |
| 1.023         | 4.2857  | 30   | 1.6941          | 109.6774 |
| 1.023         | 5.7143  | 40   | 1.7788          | 107.5269 |
| 0.1444        | 7.1429  | 50   | 1.8726          | 104.3011 |
| 0.1444        | 8.5714  | 60   | 1.9535          | 103.2258 |
| 0.1444        | 10.0    | 70   | 1.9987          | 104.3011 |
| 0.0166        | 11.4286 | 80   | 2.0563          | 102.1505 |
| 0.0166        | 12.8571 | 90   | 2.0768          | 105.3763 |
| 0.0062        | 14.2857 | 100  | 2.0832          | 105.3763 |


### Framework versions

- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0