File size: 58,989 Bytes
5b0763d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1115700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Geotrend/bert-base-sw-cased
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege.
sentences:
- Panya anayekimbia juu ya gurudumu.
- Mtu anashindana katika mashindano ya mbio.
- Ndege anayeruka.
- source_sentence: Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia
mfuko wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye
rangi nyingi.
sentences:
- Mwanamke mzee anakataa kupigwa picha.
- mtu akila na mvulana mdogo kwenye kijia cha jiji
- Msichana mchanga anakabili kamera.
- source_sentence: Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha
watoto wadogo wameketi ndani katika kivuli.
sentences:
- Mwanamke na watoto na kukaa chini.
- Mwanamke huyo anakimbia.
- Watu wanasafiri kwa baiskeli.
- source_sentence: Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi
ya kuogelea akiwa kwenye dimbwi.
sentences:
- Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye dimbwi.
- Someone is holding oranges and walking
- Mama na binti wakinunua viatu.
- source_sentence: Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa
kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi
nyuma.
sentences:
- tai huruka
- mwanamume na mwanamke wenye mikoba
- Wanaume wawili wameketi karibu na mwanamke.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on Geotrend/bert-base-sw-cased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.6937245827269046
name: Pearson Cosine
- type: spearman_cosine
value: 0.6872564222432196
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6671541268726737
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6578428252987948
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6672292642346008
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6577692881532263
name: Spearman Euclidean
- type: pearson_dot
value: 0.5234944445417878
name: Pearson Dot
- type: spearman_dot
value: 0.5126395384896926
name: Spearman Dot
- type: pearson_max
value: 0.6937245827269046
name: Pearson Max
- type: spearman_max
value: 0.6872564222432196
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.689885399601221
name: Pearson Cosine
- type: spearman_cosine
value: 0.6847071916895495
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6678379220949281
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6579957115799916
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6673062843667007
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6573006123381013
name: Spearman Euclidean
- type: pearson_dot
value: 0.49533316366864977
name: Pearson Dot
- type: spearman_dot
value: 0.48723679408818543
name: Spearman Dot
- type: pearson_max
value: 0.689885399601221
name: Pearson Max
- type: spearman_max
value: 0.6847071916895495
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.6873377612773459
name: Pearson Cosine
- type: spearman_cosine
value: 0.6816874105466478
name: Spearman Cosine
- type: pearson_manhattan
value: 0.667357515297651
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6557727891191705
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6674937201647584
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6560441259953166
name: Spearman Euclidean
- type: pearson_dot
value: 0.45660372834373963
name: Pearson Dot
- type: spearman_dot
value: 0.4533070407260065
name: Spearman Dot
- type: pearson_max
value: 0.6873377612773459
name: Pearson Max
- type: spearman_max
value: 0.6816874105466478
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.6836009506667413
name: Pearson Cosine
- type: spearman_cosine
value: 0.6795423695973911
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6663652896396122
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6534731725514219
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6663726876345561
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6537216014002204
name: Spearman Euclidean
- type: pearson_dot
value: 0.43102957451470686
name: Pearson Dot
- type: spearman_dot
value: 0.431538008932168
name: Spearman Dot
- type: pearson_max
value: 0.6836009506667413
name: Pearson Max
- type: spearman_max
value: 0.6795423695973911
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.6715253560367674
name: Pearson Cosine
- type: spearman_cosine
value: 0.669070001537953
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6571390159051358
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6456119247619697
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6598587843081631
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6472279949159918
name: Spearman Euclidean
- type: pearson_dot
value: 0.36757468941627225
name: Pearson Dot
- type: spearman_dot
value: 0.3678274698380672
name: Spearman Dot
- type: pearson_max
value: 0.6715253560367674
name: Pearson Max
- type: spearman_max
value: 0.669070001537953
name: Spearman Max
---
# SentenceTransformer based on Geotrend/bert-base-sw-cased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Geotrend/bert-base-sw-cased](https://huggingface.co/Geotrend/bert-base-sw-cased) on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Geotrend/bert-base-sw-cased](https://huggingface.co/Geotrend/bert-base-sw-cased) <!-- at revision 7d9ca957a81d2449cf1319af0b91f75f11642336 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- Mollel/swahili-n_li-triplet-swh-eng
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Mollel/MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka")
# Run inference
sentences = [
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
'mwanamume na mwanamke wenye mikoba',
'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6937 |
| **spearman_cosine** | **0.6873** |
| pearson_manhattan | 0.6672 |
| spearman_manhattan | 0.6578 |
| pearson_euclidean | 0.6672 |
| spearman_euclidean | 0.6578 |
| pearson_dot | 0.5235 |
| spearman_dot | 0.5126 |
| pearson_max | 0.6937 |
| spearman_max | 0.6873 |
#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6899 |
| **spearman_cosine** | **0.6847** |
| pearson_manhattan | 0.6678 |
| spearman_manhattan | 0.658 |
| pearson_euclidean | 0.6673 |
| spearman_euclidean | 0.6573 |
| pearson_dot | 0.4953 |
| spearman_dot | 0.4872 |
| pearson_max | 0.6899 |
| spearman_max | 0.6847 |
#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6873 |
| **spearman_cosine** | **0.6817** |
| pearson_manhattan | 0.6674 |
| spearman_manhattan | 0.6558 |
| pearson_euclidean | 0.6675 |
| spearman_euclidean | 0.656 |
| pearson_dot | 0.4566 |
| spearman_dot | 0.4533 |
| pearson_max | 0.6873 |
| spearman_max | 0.6817 |
#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6836 |
| **spearman_cosine** | **0.6795** |
| pearson_manhattan | 0.6664 |
| spearman_manhattan | 0.6535 |
| pearson_euclidean | 0.6664 |
| spearman_euclidean | 0.6537 |
| pearson_dot | 0.431 |
| spearman_dot | 0.4315 |
| pearson_max | 0.6836 |
| spearman_max | 0.6795 |
#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6715 |
| **spearman_cosine** | **0.6691** |
| pearson_manhattan | 0.6571 |
| spearman_manhattan | 0.6456 |
| pearson_euclidean | 0.6599 |
| spearman_euclidean | 0.6472 |
| pearson_dot | 0.3676 |
| spearman_dot | 0.3678 |
| pearson_max | 0.6715 |
| spearman_max | 0.6691 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Mollel/swahili-n_li-triplet-swh-eng
* Dataset: Mollel/swahili-n_li-triplet-swh-eng
* Size: 1,115,700 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 16.73 tokens</li><li>max: 71 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.74 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.0 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------------------------------------------|:-----------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika.</code> | <code>Mtu yuko nje, juu ya farasi.</code> | <code>Mtu yuko kwenye mkahawa, akiagiza omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Evaluation Dataset
#### Mollel/swahili-n_li-triplet-swh-eng
* Dataset: Mollel/swahili-n_li-triplet-swh-eng
* Size: 13,168 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 28.25 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.16 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.55 tokens</li><li>max: 46 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:-------------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
| <code>Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda.</code> | <code>Wanawake wawili wanashikilia vifurushi.</code> | <code>Wanaume hao wanapigana nje ya duka la vyakula vitamu.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.0057 | 100 | 19.9104 | - | - | - | - | - |
| 0.0115 | 200 | 15.4038 | - | - | - | - | - |
| 0.0172 | 300 | 12.4565 | - | - | - | - | - |
| 0.0229 | 400 | 11.8633 | - | - | - | - | - |
| 0.0287 | 500 | 11.0601 | - | - | - | - | - |
| 0.0344 | 600 | 9.7725 | - | - | - | - | - |
| 0.0402 | 700 | 8.8549 | - | - | - | - | - |
| 0.0459 | 800 | 8.0831 | - | - | - | - | - |
| 0.0516 | 900 | 7.9941 | - | - | - | - | - |
| 0.0574 | 1000 | 7.6537 | - | - | - | - | - |
| 0.0631 | 1100 | 7.9303 | - | - | - | - | - |
| 0.0688 | 1200 | 7.5246 | - | - | - | - | - |
| 0.0746 | 1300 | 7.7754 | - | - | - | - | - |
| 0.0803 | 1400 | 7.668 | - | - | - | - | - |
| 0.0860 | 1500 | 6.7171 | - | - | - | - | - |
| 0.0918 | 1600 | 6.347 | - | - | - | - | - |
| 0.0975 | 1700 | 6.0 | - | - | - | - | - |
| 0.1033 | 1800 | 6.4314 | - | - | - | - | - |
| 0.1090 | 1900 | 6.7947 | - | - | - | - | - |
| 0.1147 | 2000 | 6.9316 | - | - | - | - | - |
| 0.1205 | 2100 | 6.6304 | - | - | - | - | - |
| 0.1262 | 2200 | 6.132 | - | - | - | - | - |
| 0.1319 | 2300 | 5.8953 | - | - | - | - | - |
| 0.1377 | 2400 | 5.6954 | - | - | - | - | - |
| 0.1434 | 2500 | 5.6832 | - | - | - | - | - |
| 0.1491 | 2600 | 5.2266 | - | - | - | - | - |
| 0.1549 | 2700 | 5.0678 | - | - | - | - | - |
| 0.1606 | 2800 | 5.4733 | - | - | - | - | - |
| 0.1664 | 2900 | 6.0899 | - | - | - | - | - |
| 0.1721 | 3000 | 6.332 | - | - | - | - | - |
| 0.1778 | 3100 | 6.4937 | - | - | - | - | - |
| 0.1836 | 3200 | 6.2242 | - | - | - | - | - |
| 0.1893 | 3300 | 5.8023 | - | - | - | - | - |
| 0.1950 | 3400 | 5.0745 | - | - | - | - | - |
| 0.2008 | 3500 | 5.5806 | - | - | - | - | - |
| 0.2065 | 3600 | 5.5191 | - | - | - | - | - |
| 0.2122 | 3700 | 5.3849 | - | - | - | - | - |
| 0.2180 | 3800 | 5.4828 | - | - | - | - | - |
| 0.2237 | 3900 | 5.9982 | - | - | - | - | - |
| 0.2294 | 4000 | 5.6842 | - | - | - | - | - |
| 0.2352 | 4100 | 5.1627 | - | - | - | - | - |
| 0.2409 | 4200 | 5.154 | - | - | - | - | - |
| 0.2467 | 4300 | 5.7932 | - | - | - | - | - |
| 0.2524 | 4400 | 5.5758 | - | - | - | - | - |
| 0.2581 | 4500 | 5.5212 | - | - | - | - | - |
| 0.2639 | 4600 | 5.5692 | - | - | - | - | - |
| 0.2696 | 4700 | 5.2699 | - | - | - | - | - |
| 0.2753 | 4800 | 5.4919 | - | - | - | - | - |
| 0.2811 | 4900 | 5.0754 | - | - | - | - | - |
| 0.2868 | 5000 | 5.1514 | - | - | - | - | - |
| 0.2925 | 5100 | 5.0241 | - | - | - | - | - |
| 0.2983 | 5200 | 5.2679 | - | - | - | - | - |
| 0.3040 | 5300 | 5.3576 | - | - | - | - | - |
| 0.3098 | 5400 | 5.3454 | - | - | - | - | - |
| 0.3155 | 5500 | 5.2142 | - | - | - | - | - |
| 0.3212 | 5600 | 4.8418 | - | - | - | - | - |
| 0.3270 | 5700 | 4.9597 | - | - | - | - | - |
| 0.3327 | 5800 | 5.1989 | - | - | - | - | - |
| 0.3384 | 5900 | 5.2624 | - | - | - | - | - |
| 0.3442 | 6000 | 5.0705 | - | - | - | - | - |
| 0.3499 | 6100 | 5.232 | - | - | - | - | - |
| 0.3556 | 6200 | 5.2428 | - | - | - | - | - |
| 0.3614 | 6300 | 4.755 | - | - | - | - | - |
| 0.3671 | 6400 | 4.7266 | - | - | - | - | - |
| 0.3729 | 6500 | 4.6452 | - | - | - | - | - |
| 0.3786 | 6600 | 5.1431 | - | - | - | - | - |
| 0.3843 | 6700 | 4.5343 | - | - | - | - | - |
| 0.3901 | 6800 | 4.698 | - | - | - | - | - |
| 0.3958 | 6900 | 4.6944 | - | - | - | - | - |
| 0.4015 | 7000 | 4.6255 | - | - | - | - | - |
| 0.4073 | 7100 | 5.0211 | - | - | - | - | - |
| 0.4130 | 7200 | 4.6974 | - | - | - | - | - |
| 0.4187 | 7300 | 4.9182 | - | - | - | - | - |
| 0.4245 | 7400 | 4.652 | - | - | - | - | - |
| 0.4302 | 7500 | 5.1015 | - | - | - | - | - |
| 0.4360 | 7600 | 4.5249 | - | - | - | - | - |
| 0.4417 | 7700 | 4.455 | - | - | - | - | - |
| 0.4474 | 7800 | 4.8153 | - | - | - | - | - |
| 0.4532 | 7900 | 4.7665 | - | - | - | - | - |
| 0.4589 | 8000 | 4.3413 | - | - | - | - | - |
| 0.4646 | 8100 | 4.4697 | - | - | - | - | - |
| 0.4704 | 8200 | 4.6776 | - | - | - | - | - |
| 0.4761 | 8300 | 4.2868 | - | - | - | - | - |
| 0.4818 | 8400 | 4.7052 | - | - | - | - | - |
| 0.4876 | 8500 | 4.4721 | - | - | - | - | - |
| 0.4933 | 8600 | 4.6926 | - | - | - | - | - |
| 0.4991 | 8700 | 4.9891 | - | - | - | - | - |
| 0.5048 | 8800 | 4.4837 | - | - | - | - | - |
| 0.5105 | 8900 | 4.8127 | - | - | - | - | - |
| 0.5163 | 9000 | 4.3438 | - | - | - | - | - |
| 0.5220 | 9100 | 4.4743 | - | - | - | - | - |
| 0.5277 | 9200 | 4.6879 | - | - | - | - | - |
| 0.5335 | 9300 | 4.3593 | - | - | - | - | - |
| 0.5392 | 9400 | 4.3023 | - | - | - | - | - |
| 0.5449 | 9500 | 4.8188 | - | - | - | - | - |
| 0.5507 | 9600 | 4.6142 | - | - | - | - | - |
| 0.5564 | 9700 | 4.7679 | - | - | - | - | - |
| 0.5622 | 9800 | 4.6224 | - | - | - | - | - |
| 0.5679 | 9900 | 4.9154 | - | - | - | - | - |
| 0.5736 | 10000 | 4.7557 | - | - | - | - | - |
| 0.5794 | 10100 | 4.6395 | - | - | - | - | - |
| 0.5851 | 10200 | 4.7977 | - | - | - | - | - |
| 0.5908 | 10300 | 4.915 | - | - | - | - | - |
| 0.5966 | 10400 | 4.4854 | - | - | - | - | - |
| 0.6023 | 10500 | 4.3973 | - | - | - | - | - |
| 0.6080 | 10600 | 4.6964 | - | - | - | - | - |
| 0.6138 | 10700 | 4.8853 | - | - | - | - | - |
| 0.6195 | 10800 | 4.786 | - | - | - | - | - |
| 0.6253 | 10900 | 4.5482 | - | - | - | - | - |
| 0.6310 | 11000 | 4.4857 | - | - | - | - | - |
| 0.6367 | 11100 | 4.7415 | - | - | - | - | - |
| 0.6425 | 11200 | 4.2596 | - | - | - | - | - |
| 0.6482 | 11300 | 4.8578 | - | - | - | - | - |
| 0.6539 | 11400 | 4.5471 | - | - | - | - | - |
| 0.6597 | 11500 | 4.8337 | - | - | - | - | - |
| 0.6654 | 11600 | 4.2244 | - | - | - | - | - |
| 0.6711 | 11700 | 4.9619 | - | - | - | - | - |
| 0.6769 | 11800 | 4.9369 | - | - | - | - | - |
| 0.6826 | 11900 | 4.2697 | - | - | - | - | - |
| 0.6883 | 12000 | 4.2711 | - | - | - | - | - |
| 0.6941 | 12100 | 4.6396 | - | - | - | - | - |
| 0.6998 | 12200 | 4.5626 | - | - | - | - | - |
| 0.7056 | 12300 | 4.5767 | - | - | - | - | - |
| 0.7113 | 12400 | 4.6449 | - | - | - | - | - |
| 0.7170 | 12500 | 4.4217 | - | - | - | - | - |
| 0.7228 | 12600 | 4.0203 | - | - | - | - | - |
| 0.7285 | 12700 | 4.5381 | - | - | - | - | - |
| 0.7342 | 12800 | 4.5865 | - | - | - | - | - |
| 0.7400 | 12900 | 4.4203 | - | - | - | - | - |
| 0.7457 | 13000 | 4.3761 | - | - | - | - | - |
| 0.7514 | 13100 | 4.093 | - | - | - | - | - |
| 0.7572 | 13200 | 5.9235 | - | - | - | - | - |
| 0.7629 | 13300 | 5.4098 | - | - | - | - | - |
| 0.7687 | 13400 | 5.3079 | - | - | - | - | - |
| 0.7744 | 13500 | 5.0946 | - | - | - | - | - |
| 0.7801 | 13600 | 4.7098 | - | - | - | - | - |
| 0.7859 | 13700 | 4.9471 | - | - | - | - | - |
| 0.7916 | 13800 | 4.5742 | - | - | - | - | - |
| 0.7973 | 13900 | 4.6178 | - | - | - | - | - |
| 0.8031 | 14000 | 4.4516 | - | - | - | - | - |
| 0.8088 | 14100 | 4.429 | - | - | - | - | - |
| 0.8145 | 14200 | 4.3812 | - | - | - | - | - |
| 0.8203 | 14300 | 4.3739 | - | - | - | - | - |
| 0.8260 | 14400 | 4.3821 | - | - | - | - | - |
| 0.8318 | 14500 | 4.4396 | - | - | - | - | - |
| 0.8375 | 14600 | 4.2667 | - | - | - | - | - |
| 0.8432 | 14700 | 4.1963 | - | - | - | - | - |
| 0.8490 | 14800 | 4.1298 | - | - | - | - | - |
| 0.8547 | 14900 | 4.1843 | - | - | - | - | - |
| 0.8604 | 15000 | 4.0735 | - | - | - | - | - |
| 0.8662 | 15100 | 3.9319 | - | - | - | - | - |
| 0.8719 | 15200 | 4.1544 | - | - | - | - | - |
| 0.8776 | 15300 | 4.105 | - | - | - | - | - |
| 0.8834 | 15400 | 4.014 | - | - | - | - | - |
| 0.8891 | 15500 | 4.0345 | - | - | - | - | - |
| 0.8949 | 15600 | 3.9127 | - | - | - | - | - |
| 0.9006 | 15700 | 4.1002 | - | - | - | - | - |
| 0.9063 | 15800 | 3.8564 | - | - | - | - | - |
| 0.9121 | 15900 | 3.9297 | - | - | - | - | - |
| 0.9178 | 16000 | 3.8487 | - | - | - | - | - |
| 0.9235 | 16100 | 3.7099 | - | - | - | - | - |
| 0.9293 | 16200 | 3.8545 | - | - | - | - | - |
| 0.9350 | 16300 | 3.8122 | - | - | - | - | - |
| 0.9407 | 16400 | 3.8951 | - | - | - | - | - |
| 0.9465 | 16500 | 3.6996 | - | - | - | - | - |
| 0.9522 | 16600 | 3.9081 | - | - | - | - | - |
| 0.9580 | 16700 | 3.8603 | - | - | - | - | - |
| 0.9637 | 16800 | 3.8534 | - | - | - | - | - |
| 0.9694 | 16900 | 3.8145 | - | - | - | - | - |
| 0.9752 | 17000 | 3.9858 | - | - | - | - | - |
| 0.9809 | 17100 | 3.8224 | - | - | - | - | - |
| 0.9866 | 17200 | 3.7469 | - | - | - | - | - |
| 0.9924 | 17300 | 3.9066 | - | - | - | - | - |
| 0.9981 | 17400 | 3.6754 | - | - | - | - | - |
| 1.0 | 17433 | - | 0.6795 | 0.6817 | 0.6847 | 0.6691 | 0.6873 |
</details>
### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |