File size: 2,710 Bytes
4d12352 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
{
"dataset_reader": {
"class_name": "basic_classification_reader",
"x": "text",
"y": "sentiment",
"data_path": "/content/drive/MyDrive/BERT/train/",
"train": "train.csv",
"valid": "valid.csv"
},
"dataset_iterator": {
"class_name": "basic_classification_iterator",
"seed": 42
},
"chainer": {
"in": [
"x"
],
"in_y": [
"y"
],
"pipe": [
{
"id": "classes_vocab",
"class_name": "simple_vocab",
"fit_on": [
"y"
],
"save_path": "/content/drive/MyDrive/BERT/sentiment_bert_model/classes.dict",
"load_path": "/content/drive/MyDrive/BERT/sentiment_bert_model/classes.dict",
"in": "y",
"out": "y_ids"
},
{
"class_name": "torch_transformers_preprocessor",
"vocab_file": "/content/drive/MyDrive/BERT/rubert-base-cased-sentiment/",
"do_lower_case": true,
"max_seq_length": 512,
"in": [
"x"
],
"out": [
"bert_features"
]
},
{
"in": "y_ids",
"out": "y_onehot",
"class_name": "one_hotter",
"depth": "#classes_vocab.len",
"single_vector": true
},
{
"class_name": "torch_transformers_classifier",
"n_classes": 3,
"return_probas": true,
"pretrained_bert": "/content/drive/MyDrive/BERT/rubert-base-cased-sentiment/",
"save_path": "/content/drive/MyDrive/BERT/sentiment_bert_model/model",
"load_path": "/content/drive/MyDrive/BERT/sentiment_bert_model/model",
"optimizer": "AdamW",
"optimizer_parameters": {
"lr": 1e-05
},
"learning_rate_drop_patience": 5,
"learning_rate_drop_div": 2.0,
"in": [
"bert_features"
],
"in_y": [
"y_ids"
],
"out": [
"y_pred_probas"
]
},
{
"in": "y_pred_probas",
"out": "y_pred_ids",
"class_name": "proba2labels",
"max_proba": true
},
{
"in": "y_pred_ids",
"out": "y_pred_labels",
"ref": "classes_vocab"
}
],
"out": [
"y_pred_labels"
]
},
"train": {
"epochs": 5,
"batch_size": 8,
"metrics": [
"accuracy",
"f1_macro",
"f1_weighted",
{
"name": "roc_auc",
"inputs": [
"y_onehot",
"y_pred_probas"
]
}
],
"validation_patience": 2,
"val_every_n_epochs": 1,
"log_every_n_epochs": 1,
"show_examples": false,
"evaluation_targets": [
"train",
"valid"
],
"class_name": "nn_trainer"
}
}
|