File size: 3,869 Bytes
d25803a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: apache-2.0
datasets:
- BAAI/IndustryInstruction_Automobiles
base_model:
- meta-llama/Meta-Llama-3.1-8B-Instruct
---
This model is finetuned on the model llama3.1-8b-instruct using the dataset [BAAI/IndustryInstruction_Automobiles](https://huggingface.co/datasets/BAAI/IndustryInstruction_Automobiles) dataset, the dataset details can jump to the repo: [BAAI/IndustryInstruction](https://huggingface.co/datasets/BAAI/IndustryInstruction)
## training params
The training framework is llama-factory, template=llama3
```
learning_rate=1e-5
lr_scheduler_type=cosine
max_length=2048
warmup_ratio=0.05
batch_size=64
epoch=10
```
select best ckpt by the evaluation loss
## evaluation
Duto to there is no evaluation benchmark, we can not eval the model
## How to use
```python
# !/usr/bin/env python
# -*- coding:utf-8 -*-
# ==================================================================
# [Author] : xiaofeng
# [Descriptions] :
# ==================================================================
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
llama3_jinja = """{% if messages[0]['role'] == 'system' %}
{% set offset = 1 %}
{% else %}
{% set offset = 0 %}
{% endif %}
{{ bos_token }}
{% for message in messages %}
{% if (message['role'] == 'user') != (loop.index0 % 2 == offset) %}
{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}
{% endif %}
{{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' + message['content'] | trim + '<|eot_id|>' }}
{% endfor %}
{% if add_generation_prompt %}
{{ '<|start_header_id|>' + 'assistant' + '<|end_header_id|>\n\n' }}
{% endif %}"""
dtype = torch.bfloat16
model_dir = "MonteXiaofeng/Automobile-llama3_1_8B_instruct"
model = AutoModelForCausalLM.from_pretrained(
model_dir,
device_map="cuda",
torch_dtype=dtype,
)
tokenizer = AutoTokenizer.from_pretrained(model_dir)
tokenizer.chat_template = llama3_jinja # update template
message = [
{"role": "system", "content": "You are a helpful assistant"},
{
"role": "user",
"content": "随着特斯拉和小米汽车等新势力的崛起,传统车企如何应对互联网和科技公司的挑战,加速向智能化、电动化的方向转型?",
},
]
prompt = tokenizer.apply_chat_template(
message, tokenize=False, add_generation_prompt=True
)
print(prompt)
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
prompt_length = len(inputs[0])
print(f"prompt_length:{prompt_length}")
generating_args = {
"do_sample": True,
"temperature": 1.0,
"top_p": 0.5,
"top_k": 15,
"max_new_tokens": 512,
}
generate_output = model.generate(input_ids=inputs.to(model.device), **generating_args)
response_ids = generate_output[:, prompt_length:]
response = tokenizer.batch_decode(
response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)[0]
print(f"response:{response}")
"""
传统车企应积极拥抱互联网和科技公司的挑战,加速向智能化、电动化的方向转型。首先,车企需要加强与科技公司的合作,利用其在人工智能、自动驾驶等领域的技术优势,提升自身产品的智能化水平。其次,车企应加大在电动化领域的投入,研发更多电动车型,满足市场对环保、节能的需求。同时,车企还应加强与电池供应商的合作,提升电动车的续航里程和充电速度,提高用户体验。此外,车企还应加强在智能互联方面的投入,提供更好的车联网服务,满足用户对智能化、便捷化的需求。总之,传统车企应积极应对互联网和科技公司的挑战,加速向智能化、电动化的方向转型,以适应市场的变化,保持竞争力
"""
``` |