Alex_Zheng_434007290 / train_gpt2.py
Moonlighthxq's picture
Upload 3 files
4ec74e3 verified
raw
history blame
43.9 kB
"""
Reference code for GPT-2 training and inference.
Will save the model weights into files, to be read from C as initialization.
References:
1) the official GPT-2 TensorFlow implementation released by OpenAI:
https://github.com/openai/gpt-2/blob/master/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
Example launches to only benchmark the speed of bfloat16 compiled GPU training:
1 GPU:
python train_gpt2.py --write_tensors=0 --num_iterations=50 --sequence_length=1024 --compile=1 --tensorcores=1 --dtype=bfloat16
you can also turn on flash-attention by appending --flash=1
4 GPU:
torchrun --standalone --nproc_per_node=4 train_gpt2.py --write_tensors=0 --num_iterations=50 --sequence_length=1024 --compile=1 --tensorcores=1 --dtype=bfloat16
"""
import os
import math
import glob
import struct
import inspect
from contextlib import nullcontext
from dataclasses import dataclass
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch._inductor.config as config
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from torch.distributed.optim import ZeroRedundancyOptimizer
import torch.distributed as dist
# -----------------------------------------------------------------------------
# PyTorch nn.Module definitions for the GPT-2 model
import json
tiktoken_cache_dir = "/scratch/user/alexzheng/llm.c/tiktoken_cache/"
os.environ["TIKTOKEN_CACHE_DIR"] = tiktoken_cache_dir
# validate
assert os.path.exists(os.path.join(tiktoken_cache_dir, "6d1cbeee0f20b3d9449abfede4726ed8212e3aee"))
assert os.path.exists(os.path.join(tiktoken_cache_dir, "6c7ea1a7e38e3a7f062df639a5b80947f075ffe6"))
print("pass tiktoken verification")
class NewGELU(nn.Module):
"""Careful there are a few versions of GeLU, this one is the exact one used by OpenAI"""
def forward(self, input):
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
class SwiGLU(nn.Module):
def __init__(self, input_dim, output_dim):
super(SwiGLU, self).__init__()
self.fc1 = nn.Linear(input_dim, output_dim)
self.fc2 = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.fc1(x) * torch.sigmoid(self.fc2(x))
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-6):
super(RMSNorm, self).__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
rms = (x ** 2).mean(dim=-1, keepdim=True).sqrt()
return x / (rms + self.eps) * self.weight
# def apply_rope(q, k, seq_len, dim):
# position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1).to(q.device)
# div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim)).to(q.device)
#
# # 生成 RoPE 位置编码
# pe = torch.zeros(seq_len, dim).to(q.device)
# pe[:, 0::2] = torch.sin(position * div_term)
# pe[:, 1::2] = torch.cos(position * div_term)
#
# # 在 Query 和 Key 上应用 RoPE
# pe = pe.unsqueeze(0) # (1, seq_len, dim)
# q = (q * pe[:, :q.size(1), :]) - (k * pe[:, :k.size(1), :]) # 应用旋转
# k = (q * pe[:, :q.size(1), :]) + (k * pe[:, :k.size(1), :])
# return q, k
# using a global to toggle flash-attention
FLASH = 0
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.LLMC_RESIDUAL_SCALE_FLAG = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
# not really a 'bias', more of a mask, but following the OpenAI/HF naming though
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# Apply RoPE
# q, k = apply_rope(q, k, T, C // self.n_head)
if FLASH:
# flashattention
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
else:
# manual implementation of attention
# this materializes the large (T,T) matrix for all the queries and keys
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.swiglu = SwiGLU(4 * config.n_embd, 4 * config.n_embd) # Initialize SwiGLU, input and output dimensions are 4 times the embedding dimension
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.LLMC_RESIDUAL_SCALE_FLAG = 1
def forward(self, x):
x = self.c_fc(x)
x = self.swiglu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = RMSNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = RMSNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
# -----------------------------------------------------------------------------
# The main GPT-2 model
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50257
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = RMSNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.lm_head.LLMC_SKIP_INIT = 1 # don't init this one, we will tie weights
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
# init all weights, use a torch rng object to be very careful
self.init_rng = torch.Generator()
self.init_rng.manual_seed(42)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
# apply special scaled init to the residual projections, per GPT-2 paper
std = 0.02 if not hasattr(module, 'LLMC_RESIDUAL_SCALE_FLAG') else 0.02/math.sqrt(2 * self.config.n_layer)
# we want to skip initializing lm_head, which shares parameters with wte
# and wte was already initialized down below during the Embedding init
if not hasattr(module, 'LLMC_SKIP_INIT'):
torch.nn.init.normal_(module.weight, mean=0.0, std=std, generator=self.init_rng)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02, generator=self.init_rng)
def forward(self, idx, targets=None, return_logits=True):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
# inference-time mini-optimization: only forward the lm_head on the very last position
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
loss = None
# there are performance reasons why not returning logits is prudent, if not needed
if not return_logits:
logits = None
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_layer, n_head and n_embd are determined from model_type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict()
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned and match in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type, zero_stage):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print0(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print0(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == 'cuda'
print0(f"using fused AdamW: {use_fused}")
if zero_stage == 1:
print0("using ZeroRedundancyOptimizer")
optimizer = ZeroRedundancyOptimizer(**optim_groups[0], optimizer_class=torch.optim.AdamW,
lr=learning_rate, betas=betas, fused=use_fused)
optimizer.add_param_group(optim_groups[1])
else:
print0("using regular AdamW")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, fused=use_fused)
return optimizer
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
# forward the model to get the logits for the index in the sequence
logits, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
# -----------------------------------------------------------------------------
# Our own simple Distributed Data Loader
def _peek_data_shard(filename):
# only reads the header, returns header data
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
if header[0] != 20240520:
print("ERROR: magic number mismatch in the data .bin file!")
print("---> HINT: Are you passing in a correct file with --input_bin?")
print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README")
print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try")
exit(1)
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
return ntok # for now just return the number of tokens
def _load_data_shard(filename):
with open(filename, "rb") as f:
# first read the header, which is 256 int32 integers (4 bytes each)
header = np.frombuffer(f.read(256*4), dtype=np.int32)
assert header[0] == 20240520, "magic number mismatch in the data .bin file"
assert header[1] == 1, "unsupported version"
ntok = header[2] # number of tokens (claimed)
# the rest of it are tokens, stored as uint16
tokens = np.frombuffer(f.read(), dtype=np.uint16)
assert len(tokens) == ntok, "number of tokens read does not match header?"
return tokens
class DistributedDataLoader:
def __init__(self, filename_pattern, B, T, process_rank, num_processes):
self.process_rank = process_rank
self.num_processes = num_processes
self.B = B
self.T = T
# glob files that match the pattern
self.files = sorted(glob.glob(filename_pattern))
assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}"
# load and validate all data shards, count number of tokens in total
ntok_total = 0
for fname in self.files:
shard_ntok = _peek_data_shard(fname)
assert shard_ntok >= num_processes * B * T + 1
ntok_total += shard_ntok
self.ntok_total = ntok_total
print0(f"DataLoader: total number of tokens: {ntok_total:,} across {len(self.files)} files")
# kick things off
self.current_shard = None
self.reset()
def reset(self):
# we're being a bit clever here: if we already had shard 0 loaded,
# then don't do the work to reload it, just reset the pointer
if self.current_shard != 0:
self.current_shard = 0
self.tokens = _load_data_shard(self.files[self.current_shard])
self.current_position = self.process_rank * self.B * self.T
def advance(self): # advance to next data shard
self.current_shard = (self.current_shard + 1) % len(self.files)
self.current_position = self.process_rank * self.B * self.T
self.tokens = _load_data_shard(self.files[self.current_shard])
def next_batch(self):
B = self.B
T = self.T
buf = self.tokens[self.current_position : self.current_position+B*T+1]
buf = torch.tensor(buf.astype(np.int32), dtype=torch.long)
x = (buf[:-1]).view(B, T) # inputs
y = (buf[1:]).view(B, T) # targets
# advance the start pointer in current shard
self.current_position += B * T * self.num_processes
# if loading the next batch would be out of bounds advance the shard
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
self.advance()
return x, y
# -----------------------------------------------------------------------------
# Python -> C bridge utilities for saving params/grads/activations to .bin files
def write_fp32(tensor, file):
t = tensor.detach().cpu().to(torch.float32)
b = t.numpy().tobytes()
file.write(b)
def write_bf16(tensor, file):
t = tensor.detach().cpu().to(torch.bfloat16)
# numpy doesn't have bf16 datatype so we have to trick it
t = t.view(torch.int16) # trick: reinterpret as int16
b = t.numpy().tobytes()
file.write(b)
def write_tensors(model_tensors, L, file, dtype):
# writes the GPT-2 model's weights to a binary file
assert dtype in {"float32", "bfloat16"}
write_fun = write_fp32 if dtype == "float32" else write_bf16
write_fun(model_tensors["transformer.wte.weight"], file) # (V, C)
write_fun(model_tensors["transformer.wpe.weight"], file) # (T, C)
for i in range(L): # (L, C)
write_fun(model_tensors[f"transformer.h.{i}.ln_1.weight"], file)
for i in range(L): # (L, C)
write_fun(model_tensors[f"transformer.h.{i}.ln_1.bias"], file)
for i in range(L): # (L, 3C, C)
write_fun(model_tensors[f"transformer.h.{i}.attn.c_attn.weight"], file)
for i in range(L): # (L, 3C)
write_fun(model_tensors[f"transformer.h.{i}.attn.c_attn.bias"], file)
for i in range(L): # (L, C, C)
write_fun(model_tensors[f"transformer.h.{i}.attn.c_proj.weight"], file)
for i in range(L): # (L, C)
write_fun(model_tensors[f"transformer.h.{i}.attn.c_proj.bias"], file)
for i in range(L): # (L, C)
write_fun(model_tensors[f"transformer.h.{i}.ln_2.weight"], file)
for i in range(L): # (L, C)
write_fun(model_tensors[f"transformer.h.{i}.ln_2.bias"], file)
for i in range(L): # (L, 4C, C)
write_fun(model_tensors[f"transformer.h.{i}.mlp.c_fc.weight"], file)
for i in range(L): # (L, 4C)
write_fun(model_tensors[f"transformer.h.{i}.mlp.c_fc.bias"], file)
for i in range(L): # (L, C, 4C)
write_fun(model_tensors[f"transformer.h.{i}.mlp.c_proj.weight"], file)
for i in range(L): # (L, C)
write_fun(model_tensors[f"transformer.h.{i}.mlp.c_proj.bias"], file)
write_fun(model_tensors["transformer.ln_f.weight"], file) # (C, )
write_fun(model_tensors["transformer.ln_f.bias"], file) # (C, )
@torch.no_grad()
def pad_vocab(tensor, multiple=128, value=0):
"""
The dimension of the vocab size in GPT-2 is 50,257
which is unfortunately a very unfriendly number for a lot of
matrix operations on the GPU. So we pad it to the nearest
friendlier multiple, e.g. 50,304 if multiple=128 when we
export the weights into C land. This is a NOOP algorithmically
and is only done to make the tensor operations more efficient.
"""
assert tensor.ndim == 2
V, C = tensor.shape
assert V == 50257, "just being defensive here"
# calculate padded vocab size by rounding up to nearest multiple
Vp = ((V + multiple - 1) // multiple) * multiple
# pad the tensor
pad_rows = Vp - V
padded = tensor if pad_rows == 0 else F.pad(tensor, (0, 0, 0, pad_rows), value=value)
assert padded.shape == (Vp, C)
return padded
def write_model(model, filename, dtype):
# everything we need to instantiate the model
# 1) header is: version int, GPTConfig ints, padding to 1024 bytes
assert dtype in {"float32", "bfloat16"} # float16 todo maybe later
version = {
"float32": 3, # 3: all tensors are fp32, padded vocab
"bfloat16": 5, # 5: all tensors are bf16, padded vocab
}[dtype]
header = torch.zeros(256, dtype=torch.int32)
header[0] = 20240326 # magic
header[1] = version # checkpoint version
header[2] = model.config.block_size
header[3] = model.config.vocab_size
header[4] = model.config.n_layer
header[5] = model.config.n_head
header[6] = model.config.n_embd
# 2) the parameters follow the header
params = {name: param.cpu() for name, param in model.named_parameters()}
# pad the vocab to a multiple of 128 here at export, for efficiency in C
wte = params["transformer.wte.weight"] # (V, C)
wte_padded = pad_vocab(wte) # (Vp, C)
params["transformer.wte.weight"] = wte_padded # (Vp, C)
print(f"padded vocab size from {wte.size(0)} to {wte_padded.size(0)}")
header[7] = wte_padded.size(0) # padded vocab size store in header
# now write to file
with open(filename, "wb") as file:
file.write(header.numpy().tobytes()) # header
write_tensors(params, model.config.n_layer, file, dtype) # params
print(f"wrote {filename}")
def write_state(model, x, y, logits, loss, filename):
# the state is used for debugging.
# it contains information about the input, logits, loss, and the parameter gradients
# this can be used for checking the computation correctness in C
header = torch.zeros(256, dtype=torch.int32)
header[0] = 20240327 # magic
header[1] = 2 # run state version = 2 (1 -> 2 for padded vocab changes)
header[2] = x.size(0) # batch size of the batch, B
header[3] = x.size(1) # temporal extent of the batch, T
grads = {name: param.grad.cpu() for name, param in model.named_parameters()}
# pad the vocab grads here as well, to mirror write_model
wte_grad = grads["transformer.wte.weight"] # (V, C)
wte_grad_padded = pad_vocab(wte_grad, value=0) # (Vp, C) # TODO later maybe pad with nan?
grads["transformer.wte.weight"] = wte_grad_padded # (Vp, C)
print(f"padded vocab size in reference grads from {wte_grad.size(0)} to {wte_grad_padded.size(0)}")
with open(filename, "wb") as file:
# header
file.write(header.numpy().tobytes())
# input x
file.write(x.cpu().numpy().astype("int32").tobytes()) # (B, T)
# targets y
file.write(y.cpu().numpy().astype("int32").tobytes()) # (B, T)
# logits (result of the model forward pass)
write_fp32(logits.cpu(), file)
# loss (single float, result of the cross entropy loss)
write_fp32(loss.cpu(), file)
# gradients
write_tensors(grads, model.config.n_layer, file, "float32")
print(f"wrote {filename}")
def write_tokenizer(enc, filename):
n = enc.max_token_value + 1
header = torch.zeros(256, dtype=torch.int32)
header[0] = 20240328 # magic
header[1] = 2 # tokenizer version = 2 (1 -> 2: includes EOT token)
header[2] = n # number of tokens
header[3] = enc.eot_token # EOT token
with open(filename, "wb") as file:
file.write(header.numpy().tobytes())
for i in range(n):
b = enc.decode_bytes([i])
length = len(b)
assert length < 256, f"Token length exceeds 255: {length}"
file.write(struct.pack("<B", length)) # Write the length as a 1-byte unsigned integer
file.write(b) # Write the actual bytes
print(f"wrote {filename}")
# -----------------------------------------------------------------------------
# int main
def print0(*args, **kwargs):
# modified print that only prints from the master process
# if this is not a distributed run, it's just a print
if int(os.environ.get("RANK", 0)) == 0:
print(*args, **kwargs)
if __name__ == "__main__":
import time
import argparse
import tiktoken
# from transformers import GPT2Tokenizer
print0(f"Running pytorch {torch.version.__version__}")
# default settings will overfit a tiny batch of data
# and save model weights and debug state to disk on the first iteration
parser = argparse.ArgumentParser()
# file system input / output
parser.add_argument("--input_bin", type=str, default="dev/data/tinyshakespeare/tiny_shakespeare_val.bin", help="input .bin to train on")
parser.add_argument("--input_val_bin", type=str, default="", help="input .bin to eval validation loss on")
parser.add_argument("--output_dir", type=str, default="", help="output directory to which to write logs and checkpoints")
parser.add_argument("--model", type=str, default="gpt2", help="gpt2|gpt2-medium|gpt2-large|gpt2-xl|d12|d24|d36|d48")
# token layout for each step of the optimization
parser.add_argument("--batch_size", type=int, default=4, help="batch size, in units of #batch dimensions")
parser.add_argument("--sequence_length", type=int, default=64, help="sequence length")
parser.add_argument("--total_batch_size", type=int, default=256, help="total desired batch size, in units of #tokens")
# workload (number of steps)
parser.add_argument("--num_iterations", type=int, default=10, help="number of iterations to run")
parser.add_argument("--inference_only", type=int, default=0, help="only run inference")
# optimization
parser.add_argument("--learning_rate", type=float, default=1e-4, help="learning rate warmup iterations")
parser.add_argument("--warmup_iters", type=int, default=0, help="learning rate warmup iterations")
parser.add_argument("--learning_rate_decay_frac", type=float, default=1.0, help="learning rate warmup iterations")
parser.add_argument("--weight_decay", type=float, default=0.0, help="weight decay")
parser.add_argument("--grad_clip", type=float, default=1.0, help="maximum gradient magnitude")
# evaluation
parser.add_argument("--val_loss_every", type=int, default=0, help="every how mant steps to evaluate val loss?")
parser.add_argument("--val_max_steps", type=int, default=20, help="how many batches of val to average?")
parser.add_argument("--sample_every", type=int, default=0, help="how often to sample from the model?")
# debugging
parser.add_argument("--overfit_single_batch", type=int, default=1, help="overfit just one batch of data")
# numerics
parser.add_argument("--tensorcores", type=int, default=0, help="use tensorcores")
# memory management
parser.add_argument("--device", type=str, default="", help="by default we autodetect, or set it here")
parser.add_argument("--compile", type=int, default=0, help="torch.compile the model")
parser.add_argument("--flash", type=int, default=0, help="use flash attention")
parser.add_argument("--dtype", type=str, default="float32", help="float32|float16|bfloat16")
parser.add_argument("--zero_stage", type=int, default=0, help="zero redundancy optimizer stage (0/1/2/3)")
# python -> C bridge
parser.add_argument("--write_tensors", type=int, default=1, help="write tensors to disk")
args = parser.parse_args()
# args error checking and convenience variables
B, T = args.batch_size, args.sequence_length
assert 1 <= T <= 1024
assert args.dtype in {"float32", "float16", "bfloat16"}
assert args.model in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl", "d12", "d24", "d36", "d48"}
# set up DDP (distributed data parallel). torchrun sets this env variable
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
# use of DDP atm demands CUDA, we set the device appropriately according to rank
assert torch.cuda.is_available(), "for now i think we need CUDA for DDP"
init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
seed_offset = 0 # each process gets the exact same seed
zero_stage = args.zero_stage
else:
ddp_rank = 0
ddp_local_rank = 0
zero_stage = 0
ddp_world_size = 1
master_process = True
seed_offset = 0
# select the device
if args.device:
# provided explicitly by the user
device = args.device
else:
# attempt to autodetect the device
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"using device: {device}")
device_type = 'cuda' if 'cuda' in device else 'cpu'
# calculate gradient accumulation from the desired total batch size and the current run configuration
tokens_per_fwdbwd = B * T * ddp_world_size
assert args.total_batch_size % tokens_per_fwdbwd == 0
grad_accum_steps = args.total_batch_size // tokens_per_fwdbwd
print0(f"total desired batch size: {args.total_batch_size}")
print0(f"=> calculated gradient accumulation steps: {grad_accum_steps}")
# set up a context manager following the desired dtype and device
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[args.dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) if device_type == "cuda" else nullcontext()
# rng / reproducibility
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
# set the torch precision mode to use TensorFloat32 (TF32) for matmuls
# docs https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html
if args.tensorcores:
torch.set_float32_matmul_precision('high')
# turn on/off flash attention
assert args.flash in {0, 1}
FLASH = args.flash
# init (and write) the tokenizer
enc = tiktoken.get_encoding("gpt2")
# enc = GPT2Tokenizer.from_pretrained("gpt2", cache_dir="/scratch/user/alexzheng/tokenizer_cache/")
if master_process and args.write_tensors: # tokenizer is technically not tensors but ok
write_tokenizer(enc, "gpt2_tokenizer.bin")
# init the model, either from scratch or from OpenAI pretrained checkpoint
if args.model[0] == "d":
# from scratch (random weights)
model_config = {
"d12": GPTConfig(block_size=1024, vocab_size=50257, n_layer=12, n_head=12, n_embd=768),
"d24": GPTConfig(block_size=1024, vocab_size=50257, n_layer=24, n_head=16, n_embd=1024),
"d36": GPTConfig(block_size=1024, vocab_size=50257, n_layer=36, n_head=20, n_embd=1280),
"d48": GPTConfig(block_size=1024, vocab_size=50257, n_layer=48, n_head=25, n_embd=1600),
}[args.model]
model = GPT(model_config)
else:
# load the GPT-2 model weights
model = GPT.from_pretrained(args.model)
model.train()
model.to(device)
if args.compile:
if hasattr(config, "coordinate_descent_tuning"):
config.coordinate_descent_tuning = True # suggested by @Chillee
print0("compiling the model...")
model = torch.compile(model)
# -------------------------------------------------------------------------
# Our own version of a simple DistributedDataLoader
# load tokens
train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size)
val_loader = None
if args.input_val_bin:
val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size)
# -------------------------------------------------------------------------
# PyTorch -> C bridge: save some weights and state for C to load later as reference
# do one forward pass to generate ground truth for our C tests
if master_process and args.write_tensors and (not args.inference_only):
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
logits, loss = model(x, y)
loss.backward()
# save model params, in both float32 and bfloat16
model_to_size = {"gpt2": "124M", "gpt2-medium": "355M", "gpt2-large": "774M", "gpt2-xl": "1558M"}
model_to_size.update({f"d{d}": f"d{d}" for d in [12, 24, 36, 48]})
model_size_str = model_to_size[args.model] # e.g. "124M", or "d12"
write_model(model, f"gpt2_{model_size_str}.bin", dtype="float32")
write_model(model, f"gpt2_{model_size_str}_bf16.bin", dtype="bfloat16")
# save x, y, logits, loss, and parameter gradients, for debugging C
# always store these in fp32 to have an accurate reference (?)
write_state(model, x, y, logits, loss, f"gpt2_{model_size_str}_debug_state.bin")
# reset the train_loader for the optimization below
train_loader.reset()
# -------------------------------------------------------------------------
# main training loop
# here we wrap model into DDP container
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module if ddp else model # always contains the "raw" unwrapped model
# init the optimizer
optimizer = raw_model.configure_optimizers(weight_decay=args.weight_decay,
learning_rate=args.learning_rate, betas=(0.9, 0.95),
device_type=device, zero_stage=zero_stage)
# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
min_lr = args.learning_rate * args.learning_rate_decay_frac
# 1) linear warmup for warmup_iters steps
if it < args.warmup_iters:
return args.learning_rate * (it+1) / args.warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > args.num_iterations:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - args.warmup_iters) / (args.num_iterations - args.warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff starts at 1 and goes to 0
return min_lr + coeff * (args.learning_rate - min_lr)
# create the logging directory if it does not exist
logfile = None
if args.output_dir:
os.makedirs(args.output_dir, exist_ok=True)
logfile = os.path.join(args.output_dir, "main.log")
# create the log file "main.log" inside it, and wipe it clean
with open(logfile, "w") as f:
pass
if device == "cuda":
torch.cuda.reset_peak_memory_stats()
timings = []
norm = -1.0 # dummy value to print in inference-only mode
for step in range(args.num_iterations + 1):
t0 = time.time()
last_step = (step == args.num_iterations)
# once in a while evaluate the validation dataset
if (args.val_loss_every > 0 \
and (step % args.val_loss_every == 0 or last_step)) \
and (val_loader is not None):
model.eval()
val_loader.reset()
with torch.no_grad():
val_loss = 0.0
for _ in range(args.val_max_steps):
x, y = val_loader.next_batch()
x, y = x.to(device), y.to(device)
_, loss = model(x, y, return_logits=False)
val_loss += loss.item()
val_loss /= args.val_max_steps
# log to console and to file
print0(f"val loss {val_loss}")
if master_process and logfile is not None:
with open(logfile, "a") as f:
f.write("s:%d tel:%f\n" % (step, val_loss))
# once in a while perform model inference on the master process
if (args.sample_every > 0 \
and (step % args.sample_every == 0 or last_step)) \
and master_process:
model.eval()
# before we end, let's also do one round of inference
# we'll kick off the generation with "<|endoftext|>", which designates the start of a new sequence
start_ids = [enc.eot_token]
xg = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
max_new_tokens = 32
temperature = 1.0
top_k = 40
yg = raw_model.generate(xg, max_new_tokens, temperature=temperature, top_k=top_k)
print0('---------------')
print0(enc.decode(yg[0].tolist()))
print0('---------------')
# bit confusing: we want to make sure to eval and sample on 0th iteration
# but also after the very last iteration. so we loop for step <= num_iterations
# instead of just < num_iterations (one extra due to <=), only to do
# the validation/sampling one last time, and then we break right here as we're done.
if last_step:
break
# --------------- TRAINING SECTION BEGIN -----------------
model.train()
optimizer.zero_grad(set_to_none=True)
# if we are trying to overfit a single batch, we reset the loader here
if args.overfit_single_batch:
train_loader.reset()
# micro-batch loop where we do gradient accumulation to reach desired total batch size
lossf = 0.0 # for getting the mean loss (as simple float) over the accumulation steps
for micro_step in range(grad_accum_steps):
# fetch a batch
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
if ddp:
# we want only the last micro-step to sync grads in a DDP model
# the official way to do this is with model.no_sync(), but that is a
# context manager that bloats the code, so we just toggle this variable
model.require_backward_grad_sync = (micro_step == grad_accum_steps - 1)
# forward pass
with ctx:
_, loss = model(x, y, return_logits=False)
# we have to scale the loss to account for gradient accumulation,
# because the gradients just add on each successive backward().
# addition of gradients corresponds to a SUM in the objective, but
# instead of a SUM we want MEAN, so we scale the loss here
loss = loss / grad_accum_steps
lossf += loss.detach() # keep track of the mean loss
# backward pass
if not args.inference_only:
loss.backward()
if ddp:
dist.all_reduce(lossf, op=dist.ReduceOp.AVG)
lossf = lossf.item()
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
# determine and set the learning rate for this iteration
lr = get_lr(step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# step the optimizer
optimizer.step()
# --------------- TRAINING SECTION END -------------------
# everything that follows now is just diagnostics, prints, logging, etc.
# wait on the CPU for all device work to end so we get accurate per-iteration timings below
if device == "mps":
torch.mps.synchronize()
elif device == "cuda":
torch.cuda.synchronize()
# time and print
t1 = time.time()
# the 0th iteration is often an outlier (much slower) => skip logging it
tokens_per_second = grad_accum_steps * ddp_world_size * B * T / (t1-t0)
print0(f"step {step+1:4d}/{args.num_iterations} | train loss {lossf:.6f} | norm {norm:.4f} | lr {lr:.2e} | ({(t1-t0)*1000:.2f} ms | {tokens_per_second:.0f} tok/s)")
# log to logile
if master_process and logfile is not None:
with open(logfile, "a") as f:
f.write("s:%d trl:%f\n" % (step, lossf))
# keep track of smooth timings, last 20 iterations
if step > 0 and step > args.num_iterations - 20:
timings.append(t1-t0)
# print the average of the last 20 timings, to get something smooth-ish
timings = timings[-20:]
print0(f"final {len(timings)} iters avg: {np.mean(timings)*1000:.3f}ms")
print0(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB")
# -------------------------------------------------------------------------
# clean up nice
if ddp:
destroy_process_group()