File size: 3,197 Bytes
785fa00 8f36530 5189729 785fa00 4c06fd4 8f36530 3d7f3a0 8f36530 899892d 8f36530 2822dd8 8f36530 899892d 8f36530 2822dd8 8f36530 f245285 2822dd8 8f36530 f245285 2822dd8 6f1af19 099a442 52c275a 099a442 5189729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: mit
widget:
- text: >-
The early effects of our policy tightening are also becoming visible,
especially in sectors like manufacturing and construction that are more
sensitive to interest rate changes.
datasets:
- Moritz-Pfeifer/CentralBankCommunication
language:
- en
pipeline_tag: text-classification
tags:
- finance
---
<div style="display: flex; align-items: center;">
<img src="https://i.postimg.cc/HLqPqkyk/Central-Bank-Ro-BERTa-logos-black.png" width="200" height="200" style="margin-right: 20px;">
<div>
<h1 style="font-size: 36px; font-weight: bold; margin: 0;">CentralBankRoBERTa</h1>
<p style="font-size: 18px; margin: 0;">A Fine-Tuned Large Language Model for Central Bank Communications</p>
</div>
</div>
## CentralBankRoBERTa
CentralBankRoBERTA is a large language model. It combines an economic [agent classifier](https://huggingface.co/Moritz-Pfeifer/CentralBankRoBERTa-agent-classifier) that distinguishes five basic macroeconomic agents with a binary sentiment classifier that identifies the emotional content of sentences in central bank communications.
#### Overview
The SentimentClassifier model is designed to detect whether a given sentence is positive or negative for either **households**, **firms**, **the financial sector** or **the government**. This model is based on the RoBERTa architecture and has been fine-tuned on a diverse and extensive dataset to provide accurate predictions.
#### Intended Use
The AgentClassifier model is intended to be used for the analysis of central bank communications where sentiment analysis is essential.
#### Performance
- Accuracy: 88%
- F1 Score: 0.88
- Precision: 0.88
- Recall: 0.88
### Usage
You can use these models in your own applications by leveraging the Hugging Face Transformers library. Below is a Python code snippet demonstrating how to load and use the AgentClassifier model:
```python
from transformers import pipeline
# Load the SentimentClassifier model
agent_classifier = pipeline("text-classification", model="Moritz-Pfeifer/CentralBankRoBERTa-sentiment-classifier")
# Perform sentiment analysis
sentinement_result = agent_classifier("The early effects of our policy tightening are also becoming visible, especially in sectors like manufacturing and construction that are more sensitive to interest rate changes.")
print("Sentiment:", sentinement_result[0]['label'])
```
<table>
<tr>
<td colspan="2" style="border-top: 1px solid #ccc; padding: 5px; text-align: left;">
Please cite this model as Pfeifer, M. and Marohl, V.P. (2023) "CentralBankRoBERTa: A Fine-Tuned Large Language Model for Central Bank Communications"
</td>
</tr>
<tr>
<td style="padding: 5px;">
Moritz Pfeifer<br>
Institute for Economic Policy, University of Leipzig<br>
04109 Leipzig, Germany<br>
<a href="mailto:[email protected]">[email protected]</a>
</td>
<td style="padding: 5px;">
Vincent P. Marohl<br>
Department of Mathematics, Columbia University<br>
New York NY 10027, USA<br>
<a href="mailto:[email protected]">[email protected]</a>
</td>
</tr>
</table> |