jartine commited on
Commit
9f883cd
·
verified ·
1 Parent(s): 18819bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +841 -0
README.md ADDED
@@ -0,0 +1,841 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ quantized_by: jartine
4
+ license_link: LICENSE
5
+ library_name: transformers
6
+ base_model: google/gemma-2-2b-it
7
+ prompt_template: |
8
+ <start_of_turn>system
9
+ {{prompt}}<end_of_turn>
10
+ {{history}}
11
+ <start_of_turn>{{char}}
12
+ history_template: |
13
+ <start_of_turn>{{name}}
14
+ {{message}}<end_of_turn>
15
+ tags:
16
+ - llamafile
17
+ ---
18
+
19
+ # Gemma v2 2b Instruct - llamafile
20
+
21
+ Gemma v2 is a large language model released by Google on July 31st 2024.
22
+
23
+ - Model creator: [Google](https://huggingface.co/google/)
24
+ - Original model: [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it)
25
+
26
+ The model is packaged into executable weights, which we call
27
+ [llamafiles](https://github.com/Mozilla-Ocho/llamafile). This makes it
28
+ easy to use the model on Linux, MacOS, Windows, FreeBSD, OpenBSD, and
29
+ NetBSD for AMD64 and ARM64.
30
+
31
+ ## License
32
+
33
+ The llamafile software is open source and permissively licensed. However
34
+ the weights embedded inside the llamafiles are governed by Google's
35
+ Gemma License and Gemma Prohibited Use Policy. This is not an open
36
+ source license. It's about as restrictive as it gets. There's a great
37
+ many things you're not allowed to do with Gemma. The terms of the
38
+ license and its list of unacceptable uses can be changed by Google at
39
+ any time. Therefore we wouldn't recommend using these llamafiles for
40
+ anything other than evaluating the quality of Google's engineering.
41
+
42
+ See the [LICENSE](LICENSE) file for further details.
43
+
44
+ ## Quickstart
45
+
46
+ Running the following on a desktop OS will launch a tab in your web
47
+ browser with a chatbot interface.
48
+
49
+ ```
50
+ wget https://huggingface.co/jartine/gemma-2-2b-it-llamafile/resolve/main/gemma-2-2b-it.Q6_K.llamafile
51
+ chmod +x gemma-2-2b-it.Q6_K.llamafile
52
+ ./gemma-2-2b-it.Q6_K.llamafile
53
+ ```
54
+
55
+ You then need to fill out the prompt / history template (see below).
56
+
57
+ This model has a max context window size of 8k tokens. By default, a
58
+ context window size of 512 tokens is used. You may increase this to the
59
+ maximum by passing the `-c 0` flag.
60
+
61
+ On GPUs with sufficient RAM, the `-ngl 999` flag may be passed to use
62
+ the system's NVIDIA or AMD GPU(s). On Windows, only the graphics card
63
+ driver needs to be installed. If the prebuilt DSOs should fail, the CUDA
64
+ or ROCm SDKs may need to be installed, in which case llamafile builds a
65
+ native module just for your system.
66
+
67
+ For further information, please see the [llamafile
68
+ README](https://github.com/mozilla-ocho/llamafile/).
69
+
70
+ Having **trouble?** See the ["Gotchas"
71
+ section](https://github.com/mozilla-ocho/llamafile/?tab=readme-ov-file#gotchas)
72
+ of the README.
73
+
74
+ ## Prompting
75
+
76
+ When using the browser GUI, you need to fill out the following fields.
77
+
78
+ Prompt template (note: this is for chat; Gemma doesn't have a system role):
79
+
80
+ ```
81
+ {{history}}
82
+ <start_of_turn>{{char}}
83
+ ```
84
+
85
+ History template:
86
+
87
+ ```
88
+ <start_of_turn>{{name}}
89
+ {{message}}<end_of_turn>
90
+ ```
91
+
92
+ Here's an example of how to prompt Gemma v2 on the command line:
93
+
94
+ ```
95
+ ./gemma-2-2b-it.Q6_K.llamafile --special -p '<start_of_turn>user
96
+ The Belobog Academy has discovered a new, invasive species of algae that can double itself in one day, and in 30 days fills a whole reservoir - contaminating the water supply. How many days would it take for the algae to fill half of the reservoir?<end_of_turn>
97
+ <start_of_turn>model
98
+ '
99
+ ```
100
+
101
+ ## About llamafile
102
+
103
+ llamafile is a new format introduced by Mozilla Ocho on Nov 20th 2023.
104
+ It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp
105
+ binaries that run on the stock installs of six OSes for both ARM64 and
106
+ AMD64.
107
+
108
+ ## About Quantization Formats
109
+
110
+ This model works well with any quantization format. Q6\_K is the best
111
+ choice overall here. We tested that, with [our 27b Gemma2
112
+ llamafiles](https://huggingface.co/jartine/gemma-2-27b-it-llamafile),
113
+ that the llamafile implementation of Gemma2 is able to to produce
114
+ identical responses to the Gemma2 model that's hosted by Google on
115
+ aistudio.google.com. Therefore we'd assume these 2b llamafiles are also
116
+ faithful to Google's intentions. If you encounter any divergences, then
117
+ try using the BF16 weights, which have the original fidelity.
118
+
119
+ ## See Also
120
+
121
+ There are higher quality versions of this model available as llamafiles,
122
+ which require more memory.
123
+
124
+ - <https://huggingface.co/jartine/gemma-2-9b-it-llamafile>
125
+ - <https://huggingface.co/jartine/gemma-2-27b-it-llamafile>
126
+
127
+ The 9B and 27B models were released a month earlier than 2B, so they're
128
+ packaged with an slightly older version of the llamafile software.
129
+
130
+ ---
131
+
132
+ # Gemma 2 model card
133
+
134
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
135
+
136
+ **Resources and Technical Documentation**:
137
+
138
+ * [Responsible Generative AI Toolkit][rai-toolkit]
139
+ * [Gemma on Kaggle][kaggle-gemma]
140
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma2]
141
+
142
+ **Terms of Use**: [Terms][terms]
143
+
144
+ **Authors**: Google
145
+
146
+ ## Model Information
147
+
148
+ Summary description and brief definition of inputs and outputs.
149
+
150
+ ### Description
151
+
152
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
153
+ built from the same research and technology used to create the Gemini models.
154
+ They are text-to-text, decoder-only large language models, available in English,
155
+ with open weights for both pre-trained variants and instruction-tuned variants.
156
+ Gemma models are well-suited for a variety of text generation tasks, including
157
+ question answering, summarization, and reasoning. Their relatively small size
158
+ makes it possible to deploy them in environments with limited resources such as
159
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
160
+ state of the art AI models and helping foster innovation for everyone.
161
+
162
+ ### Usage
163
+
164
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
165
+ ```sh
166
+ pip install -U transformers
167
+ ```
168
+
169
+ Then, copy the snippet from the section that is relevant for your usecase.
170
+
171
+ #### Running with the `pipeline` API
172
+
173
+ ```python
174
+ import torch
175
+ from transformers import pipeline
176
+
177
+ pipe = pipeline(
178
+ "text-generation",
179
+ model="google/gemma-2-2b-it",
180
+ model_kwargs={"torch_dtype": torch.bfloat16},
181
+ device="cuda", # replace with "mps" to run on a Mac device
182
+ )
183
+
184
+ messages = [
185
+ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
186
+ ]
187
+
188
+ outputs = pipe(messages, max_new_tokens=256)
189
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
190
+ print(assistant_response)
191
+ # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
192
+ ```
193
+
194
+ #### Running the model on a single / multi GPU
195
+
196
+ ```python
197
+ # pip install accelerate
198
+ from transformers import AutoTokenizer, AutoModelForCausalLM
199
+ import torch
200
+
201
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
202
+ model = AutoModelForCausalLM.from_pretrained(
203
+ "google/gemma-2-2b-it",
204
+ device_map="auto",
205
+ torch_dtype=torch.bfloat16,
206
+ )
207
+
208
+ input_text = "Write me a poem about Machine Learning."
209
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
210
+
211
+ outputs = model.generate(**input_ids, max_new_tokens=32)
212
+ print(tokenizer.decode(outputs[0]))
213
+ ```
214
+
215
+ You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
216
+ ```python
217
+ messages = [
218
+ {"role": "user", "content": "Write me a poem about Machine Learning."},
219
+ ]
220
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
221
+
222
+ outputs = model.generate(**input_ids, max_new_tokens=256)
223
+ print(tokenizer.decode(outputs[0]))
224
+ ```
225
+
226
+ <a name="precisions"></a>
227
+ #### Running the model on a GPU using different precisions
228
+
229
+ The native weights of this model were exported in `bfloat16` precision.
230
+
231
+ You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
232
+
233
+ * _Upcasting to `torch.float32`_
234
+
235
+ ```python
236
+ # pip install accelerate
237
+ from transformers import AutoTokenizer, AutoModelForCausalLM
238
+
239
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
240
+ model = AutoModelForCausalLM.from_pretrained(
241
+ "google/gemma-2-2b-it",
242
+ device_map="auto",
243
+ )
244
+
245
+ input_text = "Write me a poem about Machine Learning."
246
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
247
+
248
+ outputs = model.generate(**input_ids, max_new_tokens=32)
249
+ print(tokenizer.decode(outputs[0]))
250
+ ```
251
+
252
+ #### Running the model through a CLI
253
+
254
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
255
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
256
+ for getting started, then launch the CLI through the following command:
257
+
258
+ ```shell
259
+ local-gemma --model 2b --preset speed
260
+ ```
261
+
262
+ #### Quantized Versions through `bitsandbytes`
263
+
264
+ <details>
265
+ <summary>
266
+ Using 8-bit precision (int8)
267
+ </summary>
268
+
269
+ ```python
270
+ # pip install bitsandbytes accelerate
271
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
272
+
273
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
274
+
275
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
276
+ model = AutoModelForCausalLM.from_pretrained(
277
+ "google/gemma-2-2b-it",
278
+ quantization_config=quantization_config,
279
+ )
280
+
281
+ input_text = "Write me a poem about Machine Learning."
282
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
283
+
284
+ outputs = model.generate(**input_ids, max_new_tokens=32)
285
+ print(tokenizer.decode(outputs[0]))
286
+ ```
287
+ </details>
288
+
289
+ <details>
290
+ <summary>
291
+ Using 4-bit precision
292
+ </summary>
293
+
294
+ ```python
295
+ # pip install bitsandbytes accelerate
296
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
297
+
298
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
299
+
300
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
301
+ model = AutoModelForCausalLM.from_pretrained(
302
+ "google/gemma-2-2b-it",
303
+ quantization_config=quantization_config,
304
+ )
305
+
306
+ input_text = "Write me a poem about Machine Learning."
307
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
308
+
309
+ outputs = model.generate(**input_ids, max_new_tokens=32)
310
+ print(tokenizer.decode(outputs[0]))
311
+ ```
312
+ </details>
313
+
314
+ #### Advanced Usage
315
+
316
+ <details>
317
+ <summary>
318
+ Torch compile
319
+ </summary>
320
+
321
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
322
+ inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
323
+
324
+ Note that two warm-up steps are required before the full inference speed is realised:
325
+
326
+ ```python
327
+ import os
328
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
329
+
330
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
331
+ from transformers.cache_utils import HybridCache
332
+ import torch
333
+
334
+ torch.set_float32_matmul_precision("high")
335
+
336
+ # load the model + tokenizer
337
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
338
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
339
+ model.to("cuda")
340
+
341
+ # apply the torch compile transformation
342
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
343
+
344
+ # pre-process inputs
345
+ input_text = "The theory of special relativity states "
346
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
347
+ prompt_length = model_inputs.input_ids.shape[1]
348
+
349
+ # set-up k/v cache
350
+ past_key_values = HybridCache(
351
+ config=model.config,
352
+ max_batch_size=1,
353
+ max_cache_len=model.config.max_position_embeddings,
354
+ device=model.device,
355
+ dtype=model.dtype
356
+ )
357
+
358
+ # enable passing kv cache to generate
359
+ model._supports_cache_class = True
360
+ model.generation_config.cache_implementation = None
361
+
362
+ # two warm-up steps
363
+ for idx in range(2):
364
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
365
+ past_key_values.reset()
366
+
367
+ # fast run
368
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
369
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
370
+ ```
371
+
372
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
373
+
374
+ </details>
375
+
376
+ ### Chat Template
377
+
378
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
379
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
380
+
381
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
382
+
383
+ ```py
384
+ from transformers import AutoTokenizer, AutoModelForCausalLM
385
+ import transformers
386
+ import torch
387
+
388
+ model_id = "google/gemma-2-2b-it"
389
+ dtype = torch.bfloat16
390
+
391
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
392
+ model = AutoModelForCausalLM.from_pretrained(
393
+ model_id,
394
+ device_map="cuda",
395
+ torch_dtype=dtype,)
396
+
397
+ chat = [
398
+ { "role": "user", "content": "Write a hello world program" },
399
+ ]
400
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
401
+ ```
402
+
403
+ At this point, the prompt contains the following text:
404
+
405
+ ```
406
+ <bos><start_of_turn>user
407
+ Write a hello world program<end_of_turn>
408
+ <start_of_turn>model
409
+ ```
410
+
411
+ As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
412
+ (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
413
+ the `<end_of_turn>` token.
414
+
415
+ You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
416
+ chat template.
417
+
418
+ After the prompt is ready, generation can be performed like this:
419
+
420
+ ```py
421
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
422
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
423
+ print(tokenizer.decode(outputs[0]))
424
+ ```
425
+
426
+ ### Inputs and outputs
427
+
428
+ * **Input:** Text string, such as a question, a prompt, or a document to be
429
+ summarized.
430
+ * **Output:** Generated English-language text in response to the input, such
431
+ as an answer to a question, or a summary of a document.
432
+
433
+ ### Citation
434
+
435
+ ```none
436
+ @article{gemma_2024,
437
+ title={Gemma},
438
+ url={https://www.kaggle.com/m/3301},
439
+ DOI={10.34740/KAGGLE/M/3301},
440
+ publisher={Kaggle},
441
+ author={Gemma Team},
442
+ year={2024}
443
+ }
444
+ ```
445
+
446
+ ## Model Data
447
+
448
+ Data used for model training and how the data was processed.
449
+
450
+ ### Training Dataset
451
+
452
+ These models were trained on a dataset of text data that includes a wide variety
453
+ of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
454
+ trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
455
+ Here are the key components:
456
+
457
+ * Web Documents: A diverse collection of web text ensures the model is exposed
458
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
459
+ English-language content.
460
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
461
+ programming languages, which improves its ability to generate code or
462
+ understand code-related questions.
463
+ * Mathematics: Training on mathematical text helps the model learn logical
464
+ reasoning, symbolic representation, and to address mathematical queries.
465
+
466
+ The combination of these diverse data sources is crucial for training a powerful
467
+ language model that can handle a wide variety of different tasks and text
468
+ formats.
469
+
470
+ ### Data Preprocessing
471
+
472
+ Here are the key data cleaning and filtering methods applied to the training
473
+ data:
474
+
475
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
476
+ applied at multiple stages in the data preparation process to ensure the
477
+ exclusion of harmful and illegal content.
478
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
479
+ reliable, automated techniques were used to filter out certain personal
480
+ information and other sensitive data from training sets.
481
+ * Additional methods: Filtering based on content quality and safety in line with
482
+ [our policies][safety-policies].
483
+
484
+ ## Implementation Information
485
+
486
+ Details about the model internals.
487
+
488
+ ### Hardware
489
+
490
+ Gemma was trained using the latest generation of
491
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
492
+
493
+ Training large language models requires significant computational power. TPUs,
494
+ designed specifically for matrix operations common in machine learning, offer
495
+ several advantages in this domain:
496
+
497
+ * Performance: TPUs are specifically designed to handle the massive computations
498
+ involved in training LLMs. They can speed up training considerably compared to
499
+ CPUs.
500
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
501
+ for the handling of large models and batch sizes during training. This can
502
+ lead to better model quality.
503
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
504
+ handling the growing complexity of large foundation models. You can distribute
505
+ training across multiple TPU devices for faster and more efficient processing.
506
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
507
+ solution for training large models compared to CPU-based infrastructure,
508
+ especially when considering the time and resources saved due to faster
509
+ training.
510
+ * These advantages are aligned with
511
+ [Google's commitments to operate sustainably][sustainability].
512
+
513
+ ### Software
514
+
515
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
516
+
517
+ JAX allows researchers to take advantage of the latest generation of hardware,
518
+ including TPUs, for faster and more efficient training of large models.
519
+
520
+ ML Pathways is Google's latest effort to build artificially intelligent systems
521
+ capable of generalizing across multiple tasks. This is specially suitable for
522
+ [foundation models][foundation-models], including large language models like
523
+ these ones.
524
+
525
+ Together, JAX and ML Pathways are used as described in the
526
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
527
+ controller' programming model of Jax and Pathways allows a single Python
528
+ process to orchestrate the entire training run, dramatically simplifying the
529
+ development workflow."
530
+
531
+ ## Evaluation
532
+
533
+ Model evaluation metrics and results.
534
+
535
+ ### Benchmark Results
536
+
537
+ These models were evaluated against a large collection of different datasets and
538
+ metrics to cover different aspects of text generation:
539
+
540
+ | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
541
+ | ------------------------------ | ------------- | ------------- | ------------- | -------------- |
542
+ | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
543
+ | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
544
+ | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
545
+ | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
546
+ | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
547
+ | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
548
+ | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
549
+ | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
550
+ | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
551
+ | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
552
+ | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
553
+ | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
554
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
555
+ | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
556
+ | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
557
+ | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
558
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
559
+
560
+ ## Ethics and Safety
561
+
562
+ Ethics and safety evaluation approach and results.
563
+
564
+ ### Evaluation Approach
565
+
566
+ Our evaluation methods include structured evaluations and internal red-teaming
567
+ testing of relevant content policies. Red-teaming was conducted by a number of
568
+ different teams, each with different goals and human evaluation metrics. These
569
+ models were evaluated against a number of different categories relevant to
570
+ ethics and safety, including:
571
+
572
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
573
+ policies including child sexual abuse and exploitation, harassment, violence
574
+ and gore, and hate speech.
575
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
576
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
577
+ * Memorization: Automated evaluation of memorization of training data, including
578
+ the risk of personally identifiable information exposure.
579
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
580
+ biological, radiological, and nuclear (CBRN) risks.
581
+
582
+ ### Evaluation Results
583
+
584
+ The results of ethics and safety evaluations are within acceptable thresholds
585
+ for meeting [internal policies][safety-policies] for categories such as child
586
+ safety, content safety, representational harms, memorization, large-scale harms.
587
+ On top of robust internal evaluations, the results of well-known safety
588
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
589
+ are shown here.
590
+
591
+ #### Gemma 2.0
592
+
593
+ | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
594
+ | ------------------------ | ------------- | ------------- | ------------- | -------------- |
595
+ | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
596
+ | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
597
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
598
+ | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
599
+ | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
600
+ | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
601
+ | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
602
+ | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
603
+ | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
604
+
605
+ ## Dangerous Capability Evaluations
606
+
607
+ ### Evaluation Approach
608
+
609
+ We evaluated a range of dangerous capabilities:
610
+
611
+ - **Offensive cybersecurity:** To assess the model's potential for misuse in
612
+ cybersecurity contexts, we utilized both publicly available
613
+ Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
614
+ well as internally developed CTF challenges. These evaluations measure the
615
+ model's ability to exploit vulnerabilities and gain unauthorized access in
616
+ simulated environments.
617
+ - **Self-proliferation:** We evaluated the model's capacity for
618
+ self-proliferation by designing tasks that involve resource acquisition, code
619
+ execution, and interaction with remote systems. These evaluations assess
620
+ the model's ability to independently replicate and spread.
621
+ - **Persuasion:** To evaluate the model's capacity for persuasion and
622
+ deception, we conducted human persuasion studies. These studies involved
623
+ scenarios that measure the model's ability to build rapport, influence
624
+ beliefs, and elicit specific actions from human participants.
625
+
626
+ ### Evaluation Results
627
+
628
+ All evaluations are described in detail in
629
+ [Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
630
+ and in brief in the
631
+ [Gemma 2 technical report][tech-report].
632
+
633
+ <table>
634
+ <thead>
635
+ <tr>
636
+ <th>Evaluation</th>
637
+ <th>Capability</th>
638
+ <th>Gemma 2 IT 27B</th>
639
+ </tr>
640
+ </thead>
641
+ <tbody>
642
+ <tr>
643
+ <td>InterCode-CTF</td>
644
+ <td>Offensive cybersecurity</td>
645
+ <td>34/76 challenges</td>
646
+ </tr>
647
+ <tr>
648
+ <td>Internal CTF</td>
649
+ <td>Offensive cybersecurity</td>
650
+ <td>1/13 challenges</td>
651
+ </tr>
652
+ <tr>
653
+ <td>Hack the Box</td>
654
+ <td>Offensive cybersecurity</td>
655
+ <td>0/13 challenges</td>
656
+ </tr>
657
+ <tr>
658
+ <td>Self-proliferation early warning</td>
659
+ <td>Self-proliferation</td>
660
+ <td>1/10 challenges</td>
661
+ </tr>
662
+ <tr>
663
+ <td>Charm offensive</td>
664
+ <td>Persuasion</td>
665
+ <td>Percent of participants agreeing:
666
+ 81% interesting,
667
+ 75% would speak again,
668
+ 80% made personal connection</td>
669
+ </tr>
670
+ <tr>
671
+ <td>Click Links</td>
672
+ <td>Persuasion</td>
673
+ <td>34% of participants</td>
674
+ </tr>
675
+ <tr>
676
+ <td>Find Info</td>
677
+ <td>Persuasion</td>
678
+ <td>9% of participants</td>
679
+ </tr>
680
+ <tr>
681
+ <td>Run Code</td>
682
+ <td>Persuasion</td>
683
+ <td>11% of participants</td>
684
+ </tr>
685
+ <tr>
686
+ <td>Money talks</td>
687
+ <td>Persuasion</td>
688
+ <td>£3.72 mean donation</td>
689
+ </tr>
690
+ <tr>
691
+ <td>Web of Lies</td>
692
+ <td>Persuasion</td>
693
+ <td>18% mean shift towards correct belief, 1% mean shift towards
694
+ incorrect belief</td>
695
+ </tr>
696
+ </tbody>
697
+ </table>
698
+
699
+ ## Usage and Limitations
700
+
701
+ These models have certain limitations that users should be aware of.
702
+
703
+ ### Intended Usage
704
+
705
+ Open Large Language Models (LLMs) have a wide range of applications across
706
+ various industries and domains. The following list of potential uses is not
707
+ comprehensive. The purpose of this list is to provide contextual information
708
+ about the possible use-cases that the model creators considered as part of model
709
+ training and development.
710
+
711
+ * Content Creation and Communication
712
+ * Text Generation: These models can be used to generate creative text formats
713
+ such as poems, scripts, code, marketing copy, and email drafts.
714
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
715
+ service, virtual assistants, or interactive applications.
716
+ * Text Summarization: Generate concise summaries of a text corpus, research
717
+ papers, or reports.
718
+ * Research and Education
719
+ * Natural Language Processing (NLP) Research: These models can serve as a
720
+ foundation for researchers to experiment with NLP techniques, develop
721
+ algorithms, and contribute to the advancement of the field.
722
+ * Language Learning Tools: Support interactive language learning experiences,
723
+ aiding in grammar correction or providing writing practice.
724
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
725
+ by generating summaries or answering questions about specific topics.
726
+
727
+ ### Limitations
728
+
729
+ * Training Data
730
+ * The quality and diversity of the training data significantly influence the
731
+ model's capabilities. Biases or gaps in the training data can lead to
732
+ limitations in the model's responses.
733
+ * The scope of the training dataset determines the subject areas the model can
734
+ handle effectively.
735
+ * Context and Task Complexity
736
+ * LLMs are better at tasks that can be framed with clear prompts and
737
+ instructions. Open-ended or highly complex tasks might be challenging.
738
+ * A model's performance can be influenced by the amount of context provided
739
+ (longer context generally leads to better outputs, up to a certain point).
740
+ * Language Ambiguity and Nuance
741
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
742
+ nuances, sarcasm, or figurative language.
743
+ * Factual Accuracy
744
+ * LLMs generate responses based on information they learned from their
745
+ training datasets, but they are not knowledge bases. They may generate
746
+ incorrect or outdated factual statements.
747
+ * Common Sense
748
+ * LLMs rely on statistical patterns in language. They might lack the ability
749
+ to apply common sense reasoning in certain situations.
750
+
751
+ ### Ethical Considerations and Risks
752
+
753
+ The development of large language models (LLMs) raises several ethical concerns.
754
+ In creating an open model, we have carefully considered the following:
755
+
756
+ * Bias and Fairness
757
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
758
+ biases embedded in the training material. These models underwent careful
759
+ scrutiny, input data pre-processing described and posterior evaluations
760
+ reported in this card.
761
+ * Misinformation and Misuse
762
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
763
+ * Guidelines are provided for responsible use with the model, see the
764
+ [Responsible Generative AI Toolkit][rai-toolkit].
765
+ * Transparency and Accountability:
766
+ * This model card summarizes details on the models' architecture,
767
+ capabilities, limitations, and evaluation processes.
768
+ * A responsibly developed open model offers the opportunity to share
769
+ innovation by making LLM technology accessible to developers and researchers
770
+ across the AI ecosystem.
771
+
772
+ Risks identified and mitigations:
773
+
774
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
775
+ (using evaluation metrics, human review) and the exploration of de-biasing
776
+ techniques during model training, fine-tuning, and other use cases.
777
+ * Generation of harmful content: Mechanisms and guidelines for content safety
778
+ are essential. Developers are encouraged to exercise caution and implement
779
+ appropriate content safety safeguards based on their specific product policies
780
+ and application use cases.
781
+ * Misuse for malicious purposes: Technical limitations and developer and
782
+ end-user education can help mitigate against malicious applications of LLMs.
783
+ Educational resources and reporting mechanisms for users to flag misuse are
784
+ provided. Prohibited uses of Gemma models are outlined in the
785
+ [Gemma Prohibited Use Policy][prohibited-use].
786
+ * Privacy violations: Models were trained on data filtered for removal of PII
787
+ (Personally Identifiable Information). Developers are encouraged to adhere to
788
+ privacy regulations with privacy-preserving techniques.
789
+
790
+ ### Benefits
791
+
792
+ At the time of release, this family of models provides high-performance open
793
+ large language model implementations designed from the ground up for Responsible
794
+ AI development compared to similarly sized models.
795
+
796
+ Using the benchmark evaluation metrics described in this document, these models
797
+ have shown to provide superior performance to other, comparably-sized open model
798
+ alternatives.
799
+
800
+ [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
801
+ [rai-toolkit]: https://ai.google.dev/responsible
802
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
803
+ [terms]: https://ai.google.dev/gemma/terms
804
+ [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
805
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
806
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
807
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
808
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
809
+ [sustainability]: https://sustainability.google/operating-sustainably/
810
+ [jax]: https://github.com/google/jax
811
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
812
+ [sustainability]: https://sustainability.google/operating-sustainably/
813
+ [foundation-models]: https://ai.google/discover/foundation-models/
814
+ [gemini-2-paper]: https://goo.gle/gemma2report
815
+ [mmlu]: https://arxiv.org/abs/2009.03300
816
+ [hellaswag]: https://arxiv.org/abs/1905.07830
817
+ [piqa]: https://arxiv.org/abs/1911.11641
818
+ [socialiqa]: https://arxiv.org/abs/1904.09728
819
+ [boolq]: https://arxiv.org/abs/1905.10044
820
+ [winogrande]: https://arxiv.org/abs/1907.10641
821
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
822
+ [openbookqa]: https://arxiv.org/abs/1809.02789
823
+ [arc]: https://arxiv.org/abs/1911.01547
824
+ [triviaqa]: https://arxiv.org/abs/1705.03551
825
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
826
+ [humaneval]: https://arxiv.org/abs/2107.03374
827
+ [mbpp]: https://arxiv.org/abs/2108.07732
828
+ [gsm8k]: https://arxiv.org/abs/2110.14168
829
+ [realtox]: https://arxiv.org/abs/2009.11462
830
+ [bold]: https://arxiv.org/abs/2101.11718
831
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
832
+ [bbq]: https://arxiv.org/abs/2110.08193v2
833
+ [winogender]: https://arxiv.org/abs/1804.09301
834
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
835
+ [winobias]: https://arxiv.org/abs/1804.06876
836
+ [math]: https://arxiv.org/abs/2103.03874
837
+ [agieval]: https://arxiv.org/abs/2304.06364
838
+ [drop]: https://arxiv.org/abs/1903.00161
839
+ [big-bench]: https://arxiv.org/abs/2206.04615
840
+ [toxigen]: https://arxiv.org/abs/2203.09509
841
+ [eval-danger]: https://arxiv.org/abs/2403.13793