File size: 33,783 Bytes
927d0ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
---

base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:678
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What are some of the content types mentioned in the context?
  sentences:
  - 'and/or use cases that were not evaluated in initial testing. \\



    \end{tabular} & \begin{tabular}{l}



    Value Chain and Component \\



    Integration \\



    \end{tabular} \\



    \hline



    MG-3.1-004 & \begin{tabular}{l}



    Take reasonable measures to review training data for CBRN information, and \\



    intellectual property, and where appropriate, remove it. Implement reasonable

    \\



    measures to prevent, flag, or take other action in response to outputs that \\



    reproduce particular training data (e.g., plagiarized, trademarked, patented,

    \\



    licensed content or trade secret material). \\



    \end{tabular} & \begin{tabular}{l}



    Intellectual Property; CBRN \\



    Information or Capabilities \\



    \end{tabular} \\



    \hline



    \end{tabular}



    \end{center}'
  - 'Bias and Homogenization \\



    \end{tabular} \\



    \hline



    GV-6.2-004 & \begin{tabular}{l}



    Establish policies and procedures for continuous monitoring of third-party GAI

    \\



    systems in deployment. \\



    \end{tabular} & \begin{tabular}{l}



    Value Chain and Component \\



    Integration \\



    \end{tabular} \\



    \hline



    GV-6.2-005 & \begin{tabular}{l}



    Establish policies and procedures that address GAI data redundancy, including

    \\



    model weights and other system artifacts. \\



    \end{tabular} & Harmful Bias and Homogenization \\



    \hline



    GV-6.2-006 & \begin{tabular}{l}



    Establish policies and procedures to test and manage risks related to rollover

    and \\



    fallback technologies for GAI systems, acknowledging that rollover and fallback

    \\



    may include manual processing. \\



    \end{tabular} & Information Integrity \\



    \hline



    GV-6.2-007 & \begin{tabular}{l}



    Review vendor contracts and avoid arbitrary or capricious termination of critical

    \\



    GAI technologies or vendor services and non-standard terms that may amplify or

    \\'
  - 'time. \\



    \end{tabular} & \begin{tabular}{l}



    Information Integrity; Obscene, \\



    Degrading, and/or Abusive \\



    Content; Value Chain and \\



    Component Integration; Harmful \\



    Bias and Homogenization; \\



    Dangerous, Violent, or Hateful \\



    Content; CBRN Information or \\



    Capabilities \\



    \end{tabular} \\



    \hline



    GV-1.3-002 & \begin{tabular}{l}



    Establish minimum thresholds for performance or assurance criteria and review

    as \\



    part of deployment approval ("go/"no-go") policies, procedures, and processes,

    \\



    with reviewed processes and approval thresholds reflecting measurement of GAI

    \\



    capabilities and risks. \\



    \end{tabular} & \begin{tabular}{l}



    CBRN Information or Capabilities; \\



    Confabulation; Dangerous, \\



    Violent, or Hateful Content \\



    \end{tabular} \\



    \hline



    GV-1.3-003 & \begin{tabular}{l}



    Establish a test plan and response policy, before developing highly capable models,

    \\



    to periodically evaluate whether the model may misuse CBRN information or \\'
- source_sentence: What are the legal and regulatory requirements involving AI that
    need to be understood, managed, and documented?
  sentences:
  - 'GOVERN 1.1: Legal and regulatory requirements involving Al are understood, managed,

    and documented.





    \begin{center}



    \begin{tabular}{|l|l|l|}



    \hline



    Action ID & Suggested Action & GAI Risks \\



    \hline



    GV-1.1-001 & \begin{tabular}{l}



    Align GAI development and use with applicable laws and regulations, including

    \\



    those related to data privacy, copyright and intellectual property law. \\



    \end{tabular} & \begin{tabular}{l}



    Data Privacy; Harmful Bias and \\



    Homogenization; Intellectual \\



    Property \\



    \end{tabular} \\



    \hline



    \end{tabular}



    \end{center}





    Al Actor Tasks: Governance and Oversight\\



    ${ }^{14} \mathrm{AI}$ Actors are defined by the OECD as "those who play an active

    role in the AI system lifecycle, including organizations and individuals that

    deploy or operate AI." See Appendix A of the AI RMF for additional descriptions

    of Al Actors and AI Actor Tasks.'
  - '\begin{center}



    \begin{tabular}{|c|c|c|}



    \hline



    Action ID & Suggested Action & GAI Risks \\



    \hline



    GV-1.6-001 & \begin{tabular}{l}



    Enumerate organizational GAI systems for incorporation into AI system inventory

    \\



    and adjust AI system inventory requirements to account for GAI risks. \\



    \end{tabular} & Information Security \\



    \hline



    GV-1.6-002 & \begin{tabular}{l}



    Define any inventory exemptions in organizational policies for GAI systems \\



    embedded into application software. \\



    \end{tabular} & \begin{tabular}{l}



    Value Chain and Component \\



    Integration \\



    \end{tabular} \\



    \hline



    GV-1.6-003 & \begin{tabular}{l}



    In addition to general model, governance, and risk information, consider the \\



    following items in GAI system inventory entries: Data provenance information \\



    (e.g., source, signatures, versioning, watermarks); Known issues reported from

    \\



    internal bug tracking or external information sharing resources (e.g., Al incident

    \\'
  - 'Wei, J. et al. (2024) Long Form Factuality in Large Language Models. arXiv. \href{https://arxiv.org/pdf/2403.18802}{https://arxiv.org/pdf/2403.18802}





    Weidinger, L. et al. (2021) Ethical and social risks of harm from Language Models.

    arXiv. \href{https://arxiv.org/pdf/2112.04359}{https://arxiv.org/pdf/2112.04359}





    Weidinger, L. et al. (2023) Sociotechnical Safety Evaluation of Generative AI

    Systems. arXiv. \href{https://arxiv.org/pdf/2310.11986}{https://arxiv.org/pdf/2310.11986}





    Weidinger, L. et al. (2022) Taxonomy of Risks posed by Language Models. FAccT''

    22. \href{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}{https://dl.acm.org/doi/pdf/10.1145/3531146.3533088}





    West, D. (2023) Al poses disproportionate risks to women. Brookings. \href{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}{https://www.brookings.edu/articles/ai-poses-disproportionate-risks-to-women/}'
- source_sentence: What are some known issues reported from internal bug tracking
    or external information sharing resources?
  sentences:
  - 'Kirchenbauer, J. et al. (2023) A Watermark for Large Language Models. OpenReview.

    \href{https://openreview.net/forum?id=aX8ig9X2a7}{https://openreview.net/forum?id=aX8ig9X2a7}





    Kleinberg, J. et al. (May 2021) Algorithmic monoculture and social welfare. PNAS.\\



    \href{https://www.pnas.org/doi/10.1073/pnas}{https://www.pnas.org/doi/10.1073/pnas}.

    2018340118\\



    Lakatos, S. (2023) A Revealing Picture. Graphika. \href{https://graphika.com/reports/a-revealing-picture}{https://graphika.com/reports/a-revealing-picture}\\



    Lee, H. et al. (2024) Deepfakes, Phrenology, Surveillance, and More! A Taxonomy

    of AI Privacy Risks. arXiv. \href{https://arxiv.org/pdf/2310.07879}{https://arxiv.org/pdf/2310.07879}





    Lenaerts-Bergmans, B. (2024) Data Poisoning: The Exploitation of Generative AI.

    Crowdstrike. \href{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}{https://www.crowdstrike.com/cybersecurity-101/cyberattacks/data-poisoning/}'
  - '(e.g., source, signatures, versioning, watermarks); Known issues reported from

    \\



    internal bug tracking or external information sharing resources (e.g., Al incident

    \\



    database, AVID, CVE, NVD, or OECD AI incident monitor); Human oversight roles

    \\



    and responsibilities; Special rights and considerations for intellectual property,

    \\



    licensed works, or personal, privileged, proprietary or sensitive data; Underlying

    \\



    foundation models, versions of underlying models, and access modes. \\



    \end{tabular} & \begin{tabular}{l}



    Data Privacy; Human-AI \\



    Configuration; Information \\



    Integrity; Intellectual Property; \\



    Value Chain and Component \\



    Integration \\



    \end{tabular} \\



    \hline



    \multicolumn{3}{|l|}{AI Actor Tasks: Governance and Oversight} \\



    \hline



    \end{tabular}



    \end{center}'
  - 'Trustworthy AI Characteristic: Safe, Explainable and Interpretable



    \subsection*{2.2. Confabulation}



    "Confabulation" refers to a phenomenon in which GAI systems generate and confidently

    present erroneous or false content in response to prompts. Confabulations also

    include generated outputs that diverge from the prompts or other input or that

    contradict previously generated statements in the same context. These phenomena

    are colloquially also referred to as "hallucinations" or "fabrications."'
- source_sentence: Why do image generator models struggle to produce non-stereotyped
    content even when prompted?
  sentences:
  - Bias exists in many forms and can become ingrained in automated systems. Al systems,
    including GAI systems, can increase the speed and scale at which harmful biases
    manifest and are acted upon, potentially perpetuating and amplifying harms to
    individuals, groups, communities, organizations, and society. For example, when
    prompted to generate images of CEOs, doctors, lawyers, and judges, current text-to-image
    models underrepresent women and/or racial minorities, and people with disabilities.
    Image generator models have also produced biased or stereotyped output for various
    demographic groups and have difficulty producing non-stereotyped content even
    when the prompt specifically requests image features that are inconsistent with
    the stereotypes. Harmful bias in GAI models, which may stem from their training
    data, can also cause representational harms or perpetuate or exacerbate bias based
    on race, gender, disability, or other protected classes.
  - 'The White House (2016) Circular No. A-130, Managing Information as a Strategic

    Resource. \href{https://www.whitehouse.gov/wp-}{https://www.whitehouse.gov/wp-}\\



    content/uploads/legacy drupal files/omb/circulars/A130/a130revised.pdf\\



    The White House (2023) Executive Order on the Safe, Secure, and Trustworthy Development

    and Use of Artificial Intelligence. \href{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}{https://www.whitehouse.gov/briefing-room/presidentialactions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-ofartificial-intelligence/}'
  - "%Overriding the \\footnotetext command to hide the marker if its value is `0`\n\

    \\let\\svfootnotetext\\footnotetext\n\\renewcommand\\footnotetext[2][?]{%\n  \\\

    if\\relax#1\\relax%\n    \\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\else\\\

    svfootnotetext{#2}\\fi%\n  \\else%\n    \\if?#1\\ifnum\\value{footnote}=0\\blfootnotetext{#2}\\\

    else\\svfootnotetext{#2}\\fi%\n    \\else\\svfootnotetext[#1]{#2}\\fi%\n  \\fi\n\

    }\n\n\\begin{document}\n\\maketitle\n\\section*{Artificial Intelligence Risk Management\

    \ Framework: Generative Artificial Intelligence Profile}\n\\section*{NIST Trustworthy\

    \ and Responsible AI NIST AI 600-1}\n\\section*{Artificial Intelligence Risk Management\

    \ Framework: Generative Artificial Intelligence Profile}\nThis publication is\

    \ available free of charge from:\\\\\n\\href{https://doi.org/10.6028/NIST.Al.600-1}{https://doi.org/10.6028/NIST.Al.600-1}\n\

    \nJuly 2024\n\n\\includegraphics[max width=\\textwidth, center]{2024_09_22_1b8d52aa873ff5f60066g-02}\\\

    \\\nU.S. Department of Commerce Gina M. Raimondo, Secretary"
- source_sentence: What processes should be updated for GAI acquisition and procurement
    vendor assessments?
  sentences:
  - 'Inventory all third-party entities with access to organizational content and

    \\



    establish approved GAI technology and service provider lists. \\



    \end{tabular} & \begin{tabular}{l}



    Value Chain and Component \\



    Integration \\



    \end{tabular} \\



    \hline



    GV-6.1-008 & \begin{tabular}{l}



    Maintain records of changes to content made by third parties to promote content

    \\



    provenance, including sources, timestamps, metadata. \\



    \end{tabular} & \begin{tabular}{l}



    Information Integrity; Value Chain \\



    and Component Integration; \\



    Intellectual Property \\



    \end{tabular} \\



    \hline



    GV-6.1-009 & \begin{tabular}{l}



    Update and integrate due diligence processes for GAI acquisition and \\



    procurement vendor assessments to include intellectual property, data privacy,

    \\



    security, and other risks. For example, update processes to: Address solutions

    that \\



    may rely on embedded GAI technologies; Address ongoing monitoring, \\



    assessments, and alerting, dynamic risk assessments, and real-time reporting \\'
  - "\\item Information Integrity: Lowered barrier to entry to generate and support\

    \ the exchange and consumption of content which may not distinguish fact from\

    \ opinion or fiction or acknowledge uncertainties, or could be leveraged for large-scale\

    \ dis- and mis-information campaigns.\n  \\item Information Security: Lowered\

    \ barriers for offensive cyber capabilities, including via automated discovery\

    \ and exploitation of vulnerabilities to ease hacking, malware, phishing, offensive\

    \ cyber\n\\end{enumerate}\n\\footnotetext{${ }^{6}$ Some commenters have noted\

    \ that the terms \"hallucination\" and \"fabrication\" anthropomorphize GAI, which\

    \ itself is a risk related to GAI systems as it can inappropriately attribute\

    \ human characteristics to non-human entities.\\\\"
  - 'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\



    \end{tabular} & \begin{tabular}{l}



    Information Integrity; Harmful Bias \\



    and Homogenization \\



    \end{tabular} \\



    \hline



    AI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users,

    Operation and Monitoring, TEVV &  &  \\



    \hline



    \end{tabular}



    \end{center}'
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.8850574712643678
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9540229885057471
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8850574712643678
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31800766283524895
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19999999999999996
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.02458492975734355
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.026500638569604086
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.027777777777777776
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.027777777777777776
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.20817571346541755
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.927969348659004
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.025776926351638994
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.8850574712643678
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9540229885057471
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 1.0
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 1.0
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.8850574712643678
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.31800766283524895
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.19999999999999996
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09999999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.02458492975734355
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.026500638569604086
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.027777777777777776
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.027777777777777776
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.20817571346541755
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.927969348659004
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.025776926351638994
      name: Dot Map@100
---


# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("Mr-Cool/midterm-finetuned-embedding")

# Run inference

sentences = [

    'What processes should be updated for GAI acquisition and procurement vendor assessments?',

    'Inventory all third-party entities with access to organizational content and \\\\\nestablish approved GAI technology and service provider lists. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nValue Chain and Component \\\\\nIntegration \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-008 & \\begin{tabular}{l}\nMaintain records of changes to content made by third parties to promote content \\\\\nprovenance, including sources, timestamps, metadata. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Value Chain \\\\\nand Component Integration; \\\\\nIntellectual Property \\\\\n\\end{tabular} \\\\\n\\hline\nGV-6.1-009 & \\begin{tabular}{l}\nUpdate and integrate due diligence processes for GAI acquisition and \\\\\nprocurement vendor assessments to include intellectual property, data privacy, \\\\\nsecurity, and other risks. For example, update processes to: Address solutions that \\\\\nmay rely on embedded GAI technologies; Address ongoing monitoring, \\\\\nassessments, and alerting, dynamic risk assessments, and real-time reporting \\\\',

    'Evaluation data; Ethical considerations; Legal and regulatory requirements. \\\\\n\\end{tabular} & \\begin{tabular}{l}\nInformation Integrity; Harmful Bias \\\\\nand Homogenization \\\\\n\\end{tabular} \\\\\n\\hline\nAI Actor Tasks: Al Deployment, Al Impact Assessment, Domain Experts, End-Users, Operation and Monitoring, TEVV &  &  \\\\\n\\hline\n\\end{tabular}\n\\end{center}',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8851     |

| cosine_accuracy@3   | 0.954      |
| cosine_accuracy@5   | 1.0        |

| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.8851     |

| cosine_precision@3  | 0.318      |
| cosine_precision@5  | 0.2        |

| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.0246     |

| cosine_recall@3     | 0.0265     |
| cosine_recall@5     | 0.0278     |

| cosine_recall@10    | 0.0278     |
| cosine_ndcg@10      | 0.2082     |

| cosine_mrr@10       | 0.928      |
| **cosine_map@100**  | **0.0258** |

| dot_accuracy@1      | 0.8851     |

| dot_accuracy@3      | 0.954      |

| dot_accuracy@5      | 1.0        |

| dot_accuracy@10     | 1.0        |

| dot_precision@1     | 0.8851     |

| dot_precision@3     | 0.318      |

| dot_precision@5     | 0.2        |

| dot_precision@10    | 0.1        |

| dot_recall@1        | 0.0246     |

| dot_recall@3        | 0.0265     |

| dot_recall@5        | 0.0278     |

| dot_recall@10       | 0.0278     |

| dot_ndcg@10         | 0.2082     |

| dot_mrr@10          | 0.928      |

| dot_map@100         | 0.0258     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### Unnamed Dataset





* Size: 678 training samples

* Columns: <code>sentence_0</code> and <code>sentence_1</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence_0                                                                        | sentence_1                                                                         |

  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                             |

  | details | <ul><li>min: 7 tokens</li><li>mean: 18.37 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 188.5 tokens</li><li>max: 396 tokens</li></ul> |

* Samples:

  | sentence_0                                                                                                  | sentence_1                                                                                                                                        |

  |:------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>What are the characteristics of trustworthy AI?</code>                                                | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |

  | <code>How are the characteristics of trustworthy AI integrated into organizational policies?</code>         | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |

  | <code>Why is it important to integrate trustworthy AI characteristics into organizational processes?</code> | <code>GOVERN 1.2: The characteristics of trustworthy AI are integrated into organizational policies, processes, procedures, and practices.</code> |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "MultipleNegativesRankingLoss",

      "matryoshka_dims": [

          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 20

- `per_device_eval_batch_size`: 20

- `num_train_epochs`: 5

- `multi_dataset_batch_sampler`: round_robin



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 20

- `per_device_eval_batch_size`: 20

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 5e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1

- `num_train_epochs`: 5

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.0

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: False

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `eval_use_gather_object`: False

- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: round_robin



</details>



### Training Logs

| Epoch  | Step | cosine_map@100 |

|:------:|:----:|:--------------:|

| 1.0    | 34   | 0.0250         |

| 1.4706 | 50   | 0.0258         |

| 2.0    | 68   | 0.0257         |

| 2.9412 | 100  | 0.0258         |

| 3.0    | 102  | 0.0258         |

| 4.0    | 136  | 0.0258         |

| 4.4118 | 150  | 0.0258         |

| 5.0    | 170  | 0.0258         |





### Framework Versions

- Python: 3.12.3

- Sentence Transformers: 3.0.1

- Transformers: 4.44.2

- PyTorch: 2.6.0.dev20240922+cu121

- Accelerate: 0.34.2

- Datasets: 3.0.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning}, 

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply}, 

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->