File size: 2,232 Bytes
f546677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.llms import HuggingFacePipeline
from langchain import PromptTemplate, LLMChain
from typing import Dict, List, Any
import holidays

template = """{char_name}'s Persona: {char_persona}
<START>
{chat_history}
{char_name}: {char_greeting}
<END>
{user_name}: {user_input}
{char_name}: """

class EndpointHandler():

    def __init__(self, path=""):
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        self.model = AutoModelForCausalLM.from_pretrained(path, load_in_8bit = True, device_map = "auto")
        self.local_llm = HuggingFacePipeline(
            pipeline = pipeline(
                "text-generation",
                model = self.model,
                tokenizer = self.tokenizer,
                max_length = 2048,
                temperature = 0.5,
                top_p = 0.9,
                top_k = 0,
                repetition_penalty = 1.1,
                pad_token_id = 50256,
                num_return_sequences = 1
            )
        )
        self.prompt_template = PromptTemplate(
            template = template,
            input_variables = [
                "user_input",
                "user_name",
                "char_name",
                "char_persona",
                "char_greeting",
                "chat_history"
            ],
            validate_template = True
        )
        self.llm_engine = LLMChain(
            llm = self.local_llm,
            prompt = self.prompt_template,
            verbose = True
        )

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        data args:
            inputs (:obj: `str`)
            date (:obj: `str`)
        Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        inputs = data.pop("inputs", data)

        return self.llm_engine.predict(
            user_input = inputs["user_input"],
            user_name = inputs["user_name"],
            char_name = inputs["char_name"],
            char_persona = inputs["char_persona"],
            char_greeting = inputs["char_greeting"],
            chat_history = inputs["chat_history"]
        ).split("\n",1)[0]