Muennighoff
commited on
Commit
·
3add142
1
Parent(s):
7972d10
Add SGPT-1.3B-weightedmean-nli-bitfit
Browse files- 1_Pooling/config.json +9 -0
- README.md +89 -0
- config.json +74 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_sts-dev_results.csv +12 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- similarity_evaluation_sts-test_results.csv +2 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 2048,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": true,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
---
|
8 |
+
|
9 |
+
# {MODEL_NAME}
|
10 |
+
|
11 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
|
13 |
+
<!--- Describe your model here -->
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
|
17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U sentence-transformers
|
21 |
+
```
|
22 |
+
|
23 |
+
Then you can use the model like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
+
|
29 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
30 |
+
embeddings = model.encode(sentences)
|
31 |
+
print(embeddings)
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Evaluation Results
|
37 |
+
|
38 |
+
<!--- Describe how your model was evaluated -->
|
39 |
+
|
40 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
41 |
+
|
42 |
+
|
43 |
+
## Training
|
44 |
+
The model was trained with the parameters:
|
45 |
+
|
46 |
+
**DataLoader**:
|
47 |
+
|
48 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 93941 with parameters:
|
49 |
+
```
|
50 |
+
{'batch_size': 6}
|
51 |
+
```
|
52 |
+
|
53 |
+
**Loss**:
|
54 |
+
|
55 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
56 |
+
```
|
57 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
58 |
+
```
|
59 |
+
|
60 |
+
Parameters of the fit()-Method:
|
61 |
+
```
|
62 |
+
{
|
63 |
+
"epochs": 1,
|
64 |
+
"evaluation_steps": 9394,
|
65 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
66 |
+
"max_grad_norm": 1,
|
67 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
68 |
+
"optimizer_params": {
|
69 |
+
"lr": 0.0001
|
70 |
+
},
|
71 |
+
"scheduler": "WarmupLinear",
|
72 |
+
"steps_per_epoch": null,
|
73 |
+
"warmup_steps": 9395,
|
74 |
+
"weight_decay": 0.01
|
75 |
+
}
|
76 |
+
```
|
77 |
+
|
78 |
+
|
79 |
+
## Full Model Architecture
|
80 |
+
```
|
81 |
+
SentenceTransformer(
|
82 |
+
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel
|
83 |
+
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Citing & Authors
|
88 |
+
|
89 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/gpt-neo-1.3B",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPTNeoModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0,
|
8 |
+
"attention_layers": [
|
9 |
+
"global",
|
10 |
+
"local",
|
11 |
+
"global",
|
12 |
+
"local",
|
13 |
+
"global",
|
14 |
+
"local",
|
15 |
+
"global",
|
16 |
+
"local",
|
17 |
+
"global",
|
18 |
+
"local",
|
19 |
+
"global",
|
20 |
+
"local",
|
21 |
+
"global",
|
22 |
+
"local",
|
23 |
+
"global",
|
24 |
+
"local",
|
25 |
+
"global",
|
26 |
+
"local",
|
27 |
+
"global",
|
28 |
+
"local",
|
29 |
+
"global",
|
30 |
+
"local",
|
31 |
+
"global",
|
32 |
+
"local"
|
33 |
+
],
|
34 |
+
"attention_types": [
|
35 |
+
[
|
36 |
+
[
|
37 |
+
"global",
|
38 |
+
"local"
|
39 |
+
],
|
40 |
+
12
|
41 |
+
]
|
42 |
+
],
|
43 |
+
"bos_token_id": 50256,
|
44 |
+
"embed_dropout": 0,
|
45 |
+
"eos_token_id": 50256,
|
46 |
+
"gradient_checkpointing": false,
|
47 |
+
"hidden_size": 2048,
|
48 |
+
"initializer_range": 0.02,
|
49 |
+
"intermediate_size": null,
|
50 |
+
"layer_norm_epsilon": 1e-05,
|
51 |
+
"max_position_embeddings": 2048,
|
52 |
+
"model_type": "gpt_neo",
|
53 |
+
"num_heads": 16,
|
54 |
+
"num_layers": 24,
|
55 |
+
"resid_dropout": 0,
|
56 |
+
"summary_activation": null,
|
57 |
+
"summary_first_dropout": 0.1,
|
58 |
+
"summary_proj_to_labels": true,
|
59 |
+
"summary_type": "cls_index",
|
60 |
+
"summary_use_proj": true,
|
61 |
+
"task_specific_params": {
|
62 |
+
"text-generation": {
|
63 |
+
"do_sample": true,
|
64 |
+
"max_length": 50,
|
65 |
+
"temperature": 0.9
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"tokenizer_class": "GPT2Tokenizer",
|
69 |
+
"torch_dtype": "float32",
|
70 |
+
"transformers_version": "4.11.3",
|
71 |
+
"use_cache": true,
|
72 |
+
"vocab_size": 50257,
|
73 |
+
"window_size": 256
|
74 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.1.0",
|
4 |
+
"transformers": "4.11.3",
|
5 |
+
"pytorch": "1.10.1"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,9394,0.8500051645470013,0.8600409992174228,0.8579350434999757,0.8600080490167477,0.8586118552167996,0.8617469203235228,0.7608058149670837,0.7604381511210038
|
3 |
+
0,18788,0.8562983277057296,0.864162204908486,0.8601312730843966,0.8625133301050996,0.8607488280811342,0.8639575286106531,0.7681104787314248,0.7692631002716936
|
4 |
+
0,28182,0.8596813841030053,0.8687182133907144,0.8650055343107589,0.8670291606236576,0.8650238007146754,0.8675525969279471,0.7675989378226494,0.7676807617837957
|
5 |
+
0,37576,0.8595723621060155,0.8675970222255094,0.861715020113807,0.8640127475099701,0.861838780152411,0.8644000217985848,0.7728457765100621,0.773343754333348
|
6 |
+
0,46970,0.856244430423873,0.8645709470622736,0.8597323280358731,0.8618667620432376,0.8600822588592132,0.8623420951114836,0.7626314124714687,0.7623843446349111
|
7 |
+
0,56364,0.8579760976747293,0.8660924375572862,0.8599734576636705,0.8622999064702692,0.859912580570416,0.8627634405979882,0.766185614913061,0.7654656190033244
|
8 |
+
0,65758,0.8563700376553489,0.8640453133687431,0.8560378589043434,0.8584665194831709,0.8563104181535777,0.8593896873800454,0.7665079970107405,0.7670426983834987
|
9 |
+
0,75152,0.8539522613570749,0.861797559148505,0.8540374976709845,0.8565108633292812,0.8544216492584971,0.8574800081262123,0.7586828062237492,0.7589404988419063
|
10 |
+
0,84546,0.8549441896255541,0.8623555737684722,0.855739468423625,0.8579737664740775,0.856250066298839,0.8588377457180055,0.7605760142582496,0.7611254932323566
|
11 |
+
0,93940,0.8558261413510759,0.8631677398093837,0.8554252531228967,0.8579164265768554,0.8556445631559064,0.8586445373996172,0.7619674147821671,0.7625495920799111
|
12 |
+
0,-1,0.8558252500080686,0.8631688981731724,0.8554246079578192,0.8578830653438679,0.8556419096769361,0.8586410249416773,0.7619578890991296,0.7625334230296067
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:680ca23f56ceb56df5a6f87bca667020fbc9d6b12bdfd456b4f49a1687833e67
|
3 |
+
size 5363096833
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 75,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
similarity_evaluation_sts-test_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.8307398632513725,0.8398094507579494,0.8352846851856872,0.8328421617889291,0.8340501965627126,0.8325099278715632,0.728276024418947,0.7078455500663012
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>", "pad_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 2048, "special_tokens_map_file": null, "name_or_path": "EleutherAI/gpt-neo-1.3B", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|