Muennighoff
commited on
Commit
·
b9af6e4
1
Parent(s):
8db6dce
Add SGPT-2.7B-weightedmean-nli-bitfit
Browse files- 1_Pooling/config.json +9 -0
- README.md +89 -0
- config.json +82 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_sts-dev_results.csv +12 -0
- merges.txt +0 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- similarity_evaluation_sts-test_results.csv +2 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 2560,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": true,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
---
|
8 |
+
|
9 |
+
# {MODEL_NAME}
|
10 |
+
|
11 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 2560 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
|
13 |
+
<!--- Describe your model here -->
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
|
17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U sentence-transformers
|
21 |
+
```
|
22 |
+
|
23 |
+
Then you can use the model like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
+
|
29 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
30 |
+
embeddings = model.encode(sentences)
|
31 |
+
print(embeddings)
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Evaluation Results
|
37 |
+
|
38 |
+
<!--- Describe how your model was evaluated -->
|
39 |
+
|
40 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
41 |
+
|
42 |
+
|
43 |
+
## Training
|
44 |
+
The model was trained with the parameters:
|
45 |
+
|
46 |
+
**DataLoader**:
|
47 |
+
|
48 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 70456 with parameters:
|
49 |
+
```
|
50 |
+
{'batch_size': 8}
|
51 |
+
```
|
52 |
+
|
53 |
+
**Loss**:
|
54 |
+
|
55 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
56 |
+
```
|
57 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
58 |
+
```
|
59 |
+
|
60 |
+
Parameters of the fit()-Method:
|
61 |
+
```
|
62 |
+
{
|
63 |
+
"epochs": 1,
|
64 |
+
"evaluation_steps": 7045,
|
65 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
66 |
+
"max_grad_norm": 1,
|
67 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
68 |
+
"optimizer_params": {
|
69 |
+
"lr": 0.0002
|
70 |
+
},
|
71 |
+
"scheduler": "WarmupLinear",
|
72 |
+
"steps_per_epoch": null,
|
73 |
+
"warmup_steps": 7046,
|
74 |
+
"weight_decay": 0.01
|
75 |
+
}
|
76 |
+
```
|
77 |
+
|
78 |
+
|
79 |
+
## Full Model Architecture
|
80 |
+
```
|
81 |
+
SentenceTransformer(
|
82 |
+
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: GPTNeoModel
|
83 |
+
(1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Citing & Authors
|
88 |
+
|
89 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/gpt-neo-2.7B",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architectures": [
|
5 |
+
"GPTNeoModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0,
|
8 |
+
"attention_layers": [
|
9 |
+
"global",
|
10 |
+
"local",
|
11 |
+
"global",
|
12 |
+
"local",
|
13 |
+
"global",
|
14 |
+
"local",
|
15 |
+
"global",
|
16 |
+
"local",
|
17 |
+
"global",
|
18 |
+
"local",
|
19 |
+
"global",
|
20 |
+
"local",
|
21 |
+
"global",
|
22 |
+
"local",
|
23 |
+
"global",
|
24 |
+
"local",
|
25 |
+
"global",
|
26 |
+
"local",
|
27 |
+
"global",
|
28 |
+
"local",
|
29 |
+
"global",
|
30 |
+
"local",
|
31 |
+
"global",
|
32 |
+
"local",
|
33 |
+
"global",
|
34 |
+
"local",
|
35 |
+
"global",
|
36 |
+
"local",
|
37 |
+
"global",
|
38 |
+
"local",
|
39 |
+
"global",
|
40 |
+
"local"
|
41 |
+
],
|
42 |
+
"attention_types": [
|
43 |
+
[
|
44 |
+
[
|
45 |
+
"global",
|
46 |
+
"local"
|
47 |
+
],
|
48 |
+
16
|
49 |
+
]
|
50 |
+
],
|
51 |
+
"bos_token_id": 50256,
|
52 |
+
"embed_dropout": 0,
|
53 |
+
"eos_token_id": 50256,
|
54 |
+
"gradient_checkpointing": false,
|
55 |
+
"hidden_size": 2560,
|
56 |
+
"initializer_range": 0.02,
|
57 |
+
"intermediate_size": null,
|
58 |
+
"layer_norm_epsilon": 1e-05,
|
59 |
+
"max_position_embeddings": 2048,
|
60 |
+
"model_type": "gpt_neo",
|
61 |
+
"num_heads": 20,
|
62 |
+
"num_layers": 32,
|
63 |
+
"resid_dropout": 0,
|
64 |
+
"summary_activation": null,
|
65 |
+
"summary_first_dropout": 0.1,
|
66 |
+
"summary_proj_to_labels": true,
|
67 |
+
"summary_type": "cls_index",
|
68 |
+
"summary_use_proj": true,
|
69 |
+
"task_specific_params": {
|
70 |
+
"text-generation": {
|
71 |
+
"do_sample": true,
|
72 |
+
"max_length": 50,
|
73 |
+
"temperature": 0.9
|
74 |
+
}
|
75 |
+
},
|
76 |
+
"tokenizer_class": "GPT2Tokenizer",
|
77 |
+
"torch_dtype": "float32",
|
78 |
+
"transformers_version": "4.11.3",
|
79 |
+
"use_cache": true,
|
80 |
+
"vocab_size": 50257,
|
81 |
+
"window_size": 256
|
82 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.1.0",
|
4 |
+
"transformers": "4.11.3",
|
5 |
+
"pytorch": "1.10.1"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,7045,0.854762523109346,0.8625722411777832,0.8559952110984044,0.8599071798553728,0.8562325179051519,0.8607011270217957,0.7604255385773144,0.7606474726533847
|
3 |
+
0,14090,0.862071545726209,0.8686263495658821,0.8587162825998957,0.8617412291621442,0.8592342866823668,0.8627125269846087,0.782391853949178,0.7829935432149258
|
4 |
+
0,21135,0.861147560133928,0.8673147899430655,0.8565176946586014,0.859934895176966,0.8562610749976107,0.8599692261614817,0.767074455302903,0.7695279716565803
|
5 |
+
0,28180,0.8633257964426606,0.8706412335168616,0.8552663992944554,0.8599920464619075,0.8540030273419198,0.8592715940080606,0.7791548165962676,0.7857437212669921
|
6 |
+
0,35225,0.8571401068053901,0.8634311296708672,0.8509601042154958,0.8549359573084144,0.8507577553572114,0.8553929614415839,0.7642286538174881,0.770790070391215
|
7 |
+
0,42270,0.8598605654357643,0.8650105143335562,0.8511585774583015,0.8554589632664334,0.8505706583139645,0.8553814756685433,0.7617624805084298,0.7702625967180601
|
8 |
+
0,49315,0.8573338952704139,0.8609427481847676,0.842483574189439,0.8467522455218017,0.8416057486283591,0.8466172561049204,0.7626709741843098,0.772898390349653
|
9 |
+
0,56360,0.8621834500026332,0.8670699694896324,0.8505378356088411,0.8545156885949555,0.8496468004499398,0.854239264916894,0.7677057311830797,0.7762473321595961
|
10 |
+
0,63405,0.8591097675730657,0.8630995653851116,0.8446734640853417,0.8496054770256773,0.8437993624528112,0.8492440088050155,0.7627356339474485,0.7727980219530748
|
11 |
+
0,70450,0.8598307992062442,0.864221237988858,0.84629527410727,0.8513689337571044,0.845389605407747,0.8508766807487939,0.7613761802820678,0.7708455277248111
|
12 |
+
0,-1,0.8598065664641443,0.8642014942030082,0.8462916558850146,0.8513545689785207,0.8453849685801835,0.8508523604473343,0.7613656467412337,0.7707829013471281
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97d3fa68460291ddf0b431b9cf0beb67ea22dac2a356a732447e7f74388ce61b
|
3 |
+
size 10739623849
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 75,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
similarity_evaluation_sts-test_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.8421195813886659,0.8544705934133663,0.8331975612681435,0.8365254010816424,0.8308796371031103,0.8350842363910842,0.7416086337173262,0.730738158975577
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>", "pad_token": "<|endoftext|>"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 2048, "special_tokens_map_file": null, "name_or_path": "EleutherAI/gpt-neo-2.7B", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|