MuyeHuang commited on
Commit
d5da25d
·
verified ·
1 Parent(s): 72248d8

Upload 12 files

Browse files
config.json ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data1/hmy/.cache/modelscope/hub/LLM-Research/Phi-3-vision-128k-instruct",
3
+ "architectures": [
4
+ "Phi3VForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_phi3_v.Phi3VConfig",
9
+ "AutoModelForCausalLM": "modeling_phi3_v.Phi3VForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "embd_layer": {
13
+ "embedding_cls": "image",
14
+ "hd_transform_order": "sub_glb",
15
+ "projection_cls": "mlp",
16
+ "use_hd_transform": true,
17
+ "with_learnable_separator": true
18
+ },
19
+ "embd_pdrop": 0.0,
20
+ "eos_token_id": 2,
21
+ "hidden_act": "silu",
22
+ "hidden_size": 3072,
23
+ "img_processor": {
24
+ "image_dim_out": 1024,
25
+ "model_name": "openai/clip-vit-large-patch14-336",
26
+ "name": "clip_vision_model",
27
+ "num_img_tokens": 144
28
+ },
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 8192,
31
+ "max_position_embeddings": 131072,
32
+ "model_type": "phi3_v",
33
+ "num_attention_heads": 32,
34
+ "num_hidden_layers": 32,
35
+ "num_key_value_heads": 32,
36
+ "original_max_position_embeddings": 4096,
37
+ "pad_token_id": 32000,
38
+ "resid_pdrop": 0.0,
39
+ "rms_norm_eps": 1e-05,
40
+ "rope_scaling": {
41
+ "long_factor": [
42
+ 1.0299999713897705,
43
+ 1.0499999523162842,
44
+ 1.0499999523162842,
45
+ 1.0799999237060547,
46
+ 1.2299998998641968,
47
+ 1.2299998998641968,
48
+ 1.2999999523162842,
49
+ 1.4499999284744263,
50
+ 1.5999999046325684,
51
+ 1.6499998569488525,
52
+ 1.8999998569488525,
53
+ 2.859999895095825,
54
+ 3.68999981880188,
55
+ 5.419999599456787,
56
+ 5.489999771118164,
57
+ 5.489999771118164,
58
+ 9.09000015258789,
59
+ 11.579999923706055,
60
+ 15.65999984741211,
61
+ 15.769999504089355,
62
+ 15.789999961853027,
63
+ 18.360000610351562,
64
+ 21.989999771118164,
65
+ 23.079999923706055,
66
+ 30.009998321533203,
67
+ 32.35000228881836,
68
+ 32.590003967285156,
69
+ 35.56000518798828,
70
+ 39.95000457763672,
71
+ 53.840003967285156,
72
+ 56.20000457763672,
73
+ 57.95000457763672,
74
+ 59.29000473022461,
75
+ 59.77000427246094,
76
+ 59.920005798339844,
77
+ 61.190006256103516,
78
+ 61.96000671386719,
79
+ 62.50000762939453,
80
+ 63.3700065612793,
81
+ 63.48000717163086,
82
+ 63.48000717163086,
83
+ 63.66000747680664,
84
+ 63.850006103515625,
85
+ 64.08000946044922,
86
+ 64.760009765625,
87
+ 64.80001068115234,
88
+ 64.81001281738281,
89
+ 64.81001281738281
90
+ ],
91
+ "short_factor": [
92
+ 1.05,
93
+ 1.05,
94
+ 1.05,
95
+ 1.1,
96
+ 1.1,
97
+ 1.1,
98
+ 1.2500000000000002,
99
+ 1.2500000000000002,
100
+ 1.4000000000000004,
101
+ 1.4500000000000004,
102
+ 1.5500000000000005,
103
+ 1.8500000000000008,
104
+ 1.9000000000000008,
105
+ 2.000000000000001,
106
+ 2.000000000000001,
107
+ 2.000000000000001,
108
+ 2.000000000000001,
109
+ 2.000000000000001,
110
+ 2.000000000000001,
111
+ 2.000000000000001,
112
+ 2.000000000000001,
113
+ 2.000000000000001,
114
+ 2.000000000000001,
115
+ 2.000000000000001,
116
+ 2.000000000000001,
117
+ 2.000000000000001,
118
+ 2.000000000000001,
119
+ 2.000000000000001,
120
+ 2.000000000000001,
121
+ 2.000000000000001,
122
+ 2.000000000000001,
123
+ 2.000000000000001,
124
+ 2.1000000000000005,
125
+ 2.1000000000000005,
126
+ 2.2,
127
+ 2.3499999999999996,
128
+ 2.3499999999999996,
129
+ 2.3499999999999996,
130
+ 2.3499999999999996,
131
+ 2.3999999999999995,
132
+ 2.3999999999999995,
133
+ 2.6499999999999986,
134
+ 2.6999999999999984,
135
+ 2.8999999999999977,
136
+ 2.9499999999999975,
137
+ 3.049999999999997,
138
+ 3.049999999999997,
139
+ 3.049999999999997
140
+ ],
141
+ "type": "su"
142
+ },
143
+ "rope_theta": 10000.0,
144
+ "sliding_window": 131072,
145
+ "tie_word_embeddings": false,
146
+ "torch_dtype": "bfloat16",
147
+ "transformers_version": "4.40.2",
148
+ "use_cache": false,
149
+ "vocab_size": 32064
150
+ }
configuration_phi3_v.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi-3-V model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI3V_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/Phi-3-vision-128k-instruct": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/config.json",
27
+ }
28
+
29
+
30
+ class Phi3VConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`Phi3VModel`]. It is used to instantiate a Phi-3
33
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
+ defaults will yield a similar configuration to that of the
35
+ [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct).
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32064):
42
+ Vocabulary size of the Phi-3-V model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`Phi3VModel`].
44
+ hidden_size (`int`, *optional*, defaults to 3072):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 8192):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer decoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer decoder.
52
+ num_key_value_heads (`int`, *optional*):
53
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
54
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
55
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
56
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
57
+ by meanpooling all the original heads within that group. For more details checkout [this
58
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
59
+ `num_attention_heads`.
60
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
61
+ Dropout probability for mlp outputs.
62
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
63
+ The dropout ratio for the embeddings.
64
+ attention_dropout (`float`, *optional*, defaults to 0.0):
65
+ The dropout ratio after computing the attention scores.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
69
+ The maximum sequence length that this model might ever be used with.
70
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
71
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
72
+ original RoPE embeddings when using long scaling.
73
+ initializer_range (`float`, *optional*, defaults to 0.02):
74
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
75
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
76
+ The epsilon value used for the RMSNorm.
77
+ use_cache (`bool`, *optional*, defaults to `True`):
78
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
79
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
80
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
81
+ Whether to tie weight embeddings
82
+ rope_theta (`float`, *optional*, defaults to 10000.0):
83
+ The base period of the RoPE embeddings.
84
+ rope_scaling (`dict`, *optional*):
85
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
86
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
87
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
88
+ divided by the number of attention heads divided by 2.
89
+ bos_token_id (`int`, *optional*, defaults to 1):
90
+ The id of the "beginning-of-sequence" token.
91
+ eos_token_id (`int`, *optional*, defaults to 32000):
92
+ The id of the "end-of-sequence" token.
93
+ pad_token_id (`int`, *optional*, defaults to 32000):
94
+ The id of the padding token.
95
+ sliding_window (`int`, *optional*):
96
+ Sliding window attention window size. If `None`, no sliding window is applied.
97
+ embd_layer (`str`, *optional*, defaults to `"default"`):
98
+ The embedding layer to use. Can be either `"default"` or `"image"`. "default" uses the standard embedding for text.
99
+
100
+ Example:
101
+
102
+ ```python
103
+ >>> from transformers import Phi3VModel, Phi3VConfig
104
+
105
+ >>> # Initializing a Phi-3-V style configuration
106
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-vision-128k-instruct")
107
+
108
+ >>> # Initializing a model from the configuration
109
+ >>> model = Phi3VModel(configuration)
110
+
111
+ >>> # Accessing the model configuration
112
+ >>> configuration = model.config
113
+ ```"""
114
+
115
+ model_type = "phi3_v"
116
+ keys_to_ignore_at_inference = ["past_key_values"]
117
+
118
+ def __init__(
119
+ self,
120
+ vocab_size=32064,
121
+ hidden_size=3072,
122
+ intermediate_size=8192,
123
+ num_hidden_layers=32,
124
+ num_attention_heads=32,
125
+ num_key_value_heads=None,
126
+ resid_pdrop=0.0,
127
+ embd_pdrop=0.0,
128
+ attention_dropout=0.0,
129
+ hidden_act="silu",
130
+ max_position_embeddings=4096,
131
+ original_max_position_embeddings=4096,
132
+ initializer_range=0.02,
133
+ rms_norm_eps=1e-5,
134
+ use_cache=True,
135
+ tie_word_embeddings=False,
136
+ rope_theta=10000.0,
137
+ rope_scaling=None,
138
+ bos_token_id=1,
139
+ eos_token_id=32000,
140
+ pad_token_id=32000,
141
+ sliding_window=None,
142
+ embd_layer: str = "default",
143
+ **kwargs,
144
+ ):
145
+ self.vocab_size = vocab_size
146
+ self.hidden_size = hidden_size
147
+ self.intermediate_size = intermediate_size
148
+ self.num_hidden_layers = num_hidden_layers
149
+ self.num_attention_heads = num_attention_heads
150
+
151
+ if num_key_value_heads is None:
152
+ num_key_value_heads = num_attention_heads
153
+
154
+ self.num_key_value_heads = num_key_value_heads
155
+ self.resid_pdrop = resid_pdrop
156
+ self.embd_pdrop = embd_pdrop
157
+ self.attention_dropout = attention_dropout
158
+ self.hidden_act = hidden_act
159
+ self.max_position_embeddings = max_position_embeddings
160
+ self.original_max_position_embeddings = original_max_position_embeddings
161
+ self.initializer_range = initializer_range
162
+ self.rms_norm_eps = rms_norm_eps
163
+ self.use_cache = use_cache
164
+ self.rope_theta = rope_theta
165
+ self.rope_scaling = rope_scaling
166
+ self._rope_scaling_validation()
167
+ self.sliding_window = sliding_window
168
+ self.embd_layer = embd_layer
169
+
170
+
171
+ super().__init__(
172
+ bos_token_id=bos_token_id,
173
+ eos_token_id=eos_token_id,
174
+ pad_token_id=pad_token_id,
175
+ tie_word_embeddings=tie_word_embeddings,
176
+ **kwargs,
177
+ )
178
+
179
+ def _rope_scaling_validation(self):
180
+ """
181
+ Validate the `rope_scaling` configuration.
182
+ """
183
+ if self.rope_scaling is None:
184
+ return
185
+
186
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
187
+ raise ValueError(
188
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
189
+ f"got {self.rope_scaling}"
190
+ )
191
+ rope_scaling_type = self.rope_scaling.get("type", None)
192
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
193
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
194
+ if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
195
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
196
+ if not (
197
+ isinstance(rope_scaling_short_factor, list)
198
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
199
+ ):
200
+ raise ValueError(
201
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
202
+ )
203
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
204
+ raise ValueError(
205
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
206
+ )
207
+ if not (
208
+ isinstance(rope_scaling_long_factor, list)
209
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
210
+ ):
211
+ raise ValueError(
212
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
213
+ )
214
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
215
+ raise ValueError(
216
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
217
+ )
image_embedding_phi3_v.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import math
17
+ import torch
18
+ import torch.nn as nn
19
+ from transformers import CLIPVisionModel, PretrainedConfig
20
+ from transformers import CLIPVisionConfig
21
+ from transformers.utils import logging
22
+ from datetime import datetime
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+ CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
27
+ attention_dropout=0.0,
28
+ dropout=0.0,
29
+ hidden_act="quick_gelu",
30
+ hidden_size=1024,
31
+ image_size=336,
32
+ initializer_factor=1.0,
33
+ initializer_range=0.02,
34
+ intermediate_size=4096,
35
+ layer_norm_eps=1e-05,
36
+ num_attention_heads=16,
37
+ num_channels=3,
38
+ num_hidden_layers=24,
39
+ patch_size=14,
40
+ projection_dim=768
41
+ )
42
+
43
+ class Phi3ImageEmbedding(nn.Module):
44
+ """Phi3 Image embedding."""
45
+
46
+ def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
47
+ super().__init__()
48
+
49
+ # n_embed or hidden_size
50
+ hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
51
+ if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
52
+ embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
53
+ self.drop = nn.Dropout(embd_drop)
54
+ else:
55
+ self.drop = None
56
+
57
+ self.wte = wte
58
+
59
+ if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
60
+ assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
61
+ assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
62
+ assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
63
+ assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
64
+ clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
65
+ self.img_processor = CLIPVisionModel(clip_config)
66
+ image_dim_out = config.img_processor['image_dim_out']
67
+ self.num_img_tokens = config.img_processor['num_img_tokens']
68
+ else:
69
+ raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
70
+
71
+ self.image_dim_out = image_dim_out
72
+ self.img_sizes = None
73
+
74
+ # global_gn and sub_gn for hd transform, serves as line separator
75
+ self.use_hd_transform = kwargs.get('use_hd_transform', False)
76
+ self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
77
+ self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
78
+ # with_hd_transform and with_learnable_separator should have same value
79
+ assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
80
+ if self.with_learnable_separator:
81
+ assert self.use_hd_transform, 'learnable separator is only for hd transform'
82
+ # 1024 * 4, merge spatial to channel dimension
83
+ self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
84
+ self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
85
+ logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
86
+
87
+ projection_cls = kwargs.get('projection_cls', 'linear')
88
+ if projection_cls == 'linear':
89
+ self.img_projection = nn.Linear(image_dim_out, hidden_size)
90
+ elif projection_cls == 'mlp' and self.use_hd_transform:
91
+ dim_projection = hidden_size
92
+ depth = 2
93
+ layers = [nn.Linear(image_dim_out * 4, dim_projection)]
94
+ for _ in range(1, depth):
95
+ layers.extend([nn.GELU(),
96
+ nn.Linear(dim_projection, dim_projection)])
97
+ self.img_projection = nn.Sequential(*layers)
98
+ elif projection_cls == 'mlp':
99
+ dim_projection = hidden_size
100
+ depth = 2
101
+ layers = [nn.Linear(image_dim_out, dim_projection)]
102
+ for _ in range(1, depth):
103
+ layers.extend([nn.GELU(),
104
+ nn.Linear(dim_projection, dim_projection)])
105
+ self.img_projection = nn.Sequential(*layers)
106
+ else:
107
+ raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
108
+
109
+ self.vocab_size = config.vocab_size
110
+ self.img_features = None
111
+
112
+ if isinstance(config.img_processor, dict):
113
+ self.layer_idx = config.img_processor.get('layer_idx', -2)
114
+ self.type_feature = config.img_processor.get('type_feature', 'patch')
115
+ else:
116
+ self.layer_idx = -2
117
+ self.type_feature = 'patch'
118
+
119
+
120
+ def set_img_features(self, img_features: torch.FloatTensor) -> None:
121
+ self.img_features = img_features
122
+
123
+ def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
124
+ self.img_sizes = img_sizes
125
+
126
+ def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
127
+ LAYER_IDX = self.layer_idx
128
+ TYPE_FEATURE = self.type_feature
129
+
130
+ img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
131
+ img_feature = img_processor_output.hidden_states[LAYER_IDX]
132
+
133
+ if TYPE_FEATURE == "patch":
134
+ patch_feature = img_feature[:, 1:]
135
+ return patch_feature
136
+
137
+ if TYPE_FEATURE == "cls_patch":
138
+ return img_feature
139
+
140
+ raise NotImplementedError
141
+
142
+ def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:
143
+
144
+ MAX_INPUT_ID = int(1e9)
145
+ img_embeds = pixel_values
146
+ img_sizes = image_sizes
147
+
148
+ if self.img_features is not None:
149
+ img_embeds = self.img_features.clone()
150
+ self.img_features = None
151
+
152
+ if self.img_sizes is not None:
153
+ img_sizes = self.img_sizes
154
+
155
+ input_shape = input_ids.size()
156
+ input_ids = input_ids.view(-1, input_shape[-1])
157
+
158
+ with torch.no_grad():
159
+ positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False)
160
+
161
+ select = False
162
+
163
+ if isinstance(self.img_projection, nn.Sequential):
164
+ target_device = self.img_projection[0].bias.device
165
+ target_dtype = self.img_projection[0].bias.dtype
166
+ else: # It's a single nn.Linear layer
167
+ target_device = self.img_projection.bias.device
168
+ target_dtype = self.img_projection.bias.dtype
169
+
170
+ if len(positions.tolist()) > 0:
171
+ with torch.no_grad():
172
+ g_values = abs(input_ids[positions[:, 0], positions[:, 1]])
173
+
174
+ if self.use_hd_transform and img_sizes is not None and len(img_sizes):
175
+ hd_transform = True
176
+ assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform'
177
+ # img_embeds: (num_images, max_num_crops, 3, H, W)
178
+ # img_sizes: (num_images, 2).view(1, -1)
179
+
180
+ start_time = datetime.now()
181
+ bs = img_embeds.shape[0]
182
+ # Nx(HW)xC
183
+ img_features = self.get_img_features(img_embeds.flatten(0, 1))
184
+ base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5)
185
+
186
+ assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform'
187
+
188
+ # bs x max_num_crops x (24x24) x C
189
+ img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out)
190
+ C = self.image_dim_out
191
+ H = base_feat_height
192
+
193
+ output_imgs = []
194
+ output_len = []
195
+ # training is tensor, inference is list
196
+ if isinstance(img_sizes, torch.Tensor):
197
+ img_sizes = img_sizes.view(-1, 2)
198
+ for _bs in range(bs):
199
+ h, w = img_sizes[_bs]
200
+ h = h // 336
201
+ w = w // 336
202
+ B_ = h * w
203
+
204
+ # 1 x (24x24) x 1024
205
+ global_img_feature = img_features[_bs, :1]
206
+
207
+ # 1 x 12 x 12 x 4096
208
+ glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
209
+ temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1)
210
+
211
+ # 1 x 156 x 4096
212
+ glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
213
+
214
+ # (max_num_crops-1) x (12x12) x C
215
+ sub_img = img_features[_bs, 1:]
216
+ # 16x574x1024
217
+ # get rid of padding sub_img
218
+ sub_img = sub_img[:B_]
219
+
220
+ # (num_crops, 12, 2, 12, 2, 1024) -> (num_crops, 12, 12, 2, 2, 1024) -> (num_crops, 12*12, 4*1024)
221
+ sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
222
+ sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C)
223
+ temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1)
224
+ sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
225
+ # (1, num_img_tokens, 1024*4)
226
+
227
+ # glb + sub
228
+ if self.hd_transform_order == 'glb_sub':
229
+ output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1))
230
+ elif self.hd_transform_order == 'sub_glb':
231
+ output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1))
232
+ else:
233
+ raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented')
234
+
235
+ temp_len = int((h*w+1)*144 + 1 + (h+1)*12)
236
+ assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}'
237
+ output_len.append(temp_len)
238
+
239
+ num_img_tokens = output_len
240
+ img_set_tensor = []
241
+ for _output_img in output_imgs:
242
+ img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype))
243
+ img_set_tensor.append(img_feature_proj)
244
+ logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}')
245
+ elif img_embeds.ndim == 4:
246
+ selected_g_values = g_values[::self.num_img_tokens]
247
+ assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
248
+ start_time = datetime.now()
249
+ tt = (
250
+ self.get_img_features(img_embeds)
251
+ .to(target_device)
252
+ .to(target_dtype)
253
+ .reshape(-1, self.image_dim_out)
254
+ )
255
+ logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}')
256
+ img_set_tensor = self.img_projection(tt) # adapted visual features.
257
+ elif img_embeds.ndim == 3:
258
+ selected_g_values = g_values[::self.num_img_tokens]
259
+ assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}'
260
+ tt = (
261
+ img_embeds
262
+ .to(target_device)
263
+ .to(target_dtype)
264
+ .view(-1, self.image_dim_out)
265
+ )
266
+ img_set_tensor = self.img_projection(tt) # adapted visual features.
267
+ else:
268
+ raise NotImplementedError
269
+ select = True
270
+
271
+ with torch.no_grad():
272
+ input_ids.clamp_min_(0).clamp_max_(self.vocab_size)
273
+
274
+ hidden_states = self.wte(input_ids)
275
+
276
+ if select:
277
+ if hd_transform:
278
+ idx = 0
279
+ for i, cnt in enumerate(num_img_tokens):
280
+ hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
281
+ img_set_tensor[i]
282
+ .to(hidden_states.dtype)
283
+ .to(hidden_states.device)
284
+ )
285
+ idx += cnt
286
+ else:
287
+ idx = 0
288
+ assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}'
289
+ for i, g in enumerate(selected_g_values):
290
+ cnt = self.num_img_tokens
291
+ hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = (
292
+ img_set_tensor[i * cnt : (i + 1) * cnt]
293
+ .to(hidden_states.dtype)
294
+ .to(hidden_states.device)
295
+ )
296
+ idx += cnt
297
+
298
+ if self.drop is not None:
299
+ hidden_states = self.drop(hidden_states)
300
+
301
+ return hidden_states
image_processing_phi3_v.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Image processor class for Phi3-V."""
17
+
18
+ from typing import List, Optional, Union
19
+
20
+ import numpy as np
21
+
22
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
23
+ from transformers.image_transforms import (
24
+ convert_to_rgb,
25
+ )
26
+ from transformers.image_utils import (
27
+ OPENAI_CLIP_MEAN,
28
+ OPENAI_CLIP_STD,
29
+ ImageInput,
30
+ make_list_of_images,
31
+ valid_images,
32
+ )
33
+ from transformers.utils import TensorType, is_vision_available, logging
34
+
35
+ from transformers import AutoImageProcessor
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+
40
+ if is_vision_available():
41
+ from PIL import Image
42
+
43
+ import torch
44
+ import torchvision
45
+
46
+ def padding_336(b):
47
+ width, height = b.size
48
+ tar = int(np.ceil(height / 336) * 336)
49
+ top_padding = int((tar - height)/2)
50
+ bottom_padding = tar - height - top_padding
51
+ left_padding = 0
52
+ right_padding = 0
53
+ b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
54
+
55
+ return b
56
+
57
+ def calc_padded_size(width, height, padding_unit=336):
58
+ target_height = int(np.ceil(height / padding_unit) * padding_unit)
59
+ top_padding = int((target_height - height) / 2)
60
+ bottom_padding = target_height - height - top_padding
61
+ left_padding = 0
62
+ right_padding = 0
63
+ padded_width = width + left_padding + right_padding
64
+ padded_height = height + top_padding + bottom_padding
65
+ return padded_width, padded_height
66
+
67
+ def HD_transform(img, hd_num=16):
68
+ width, height = img.size
69
+ trans = False
70
+ if width < height:
71
+ img = img.transpose(Image.TRANSPOSE)
72
+ trans = True
73
+ width, height = img.size
74
+ ratio = (width/ height)
75
+ scale = 1
76
+ while scale*np.ceil(scale/ratio) <= hd_num:
77
+ scale += 1
78
+ scale -= 1
79
+ new_w = int(scale * 336)
80
+ new_h = int(new_w / ratio)
81
+
82
+ img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
83
+ img = padding_336(img)
84
+ width, height = img.size
85
+ if trans:
86
+ img = img.transpose(Image.TRANSPOSE)
87
+
88
+ return img
89
+
90
+ def calc_hd_transform_size(width, height, hd_num=16):
91
+ transposed = False
92
+ if width < height:
93
+ width, height = height, width
94
+ transposed = True
95
+
96
+ ratio = width / height
97
+ scale = 1
98
+ while scale * np.ceil(scale / ratio) <= hd_num:
99
+ scale += 1
100
+ scale -= 1
101
+
102
+ new_width = int(scale * 336)
103
+ new_height = int(new_width / ratio)
104
+
105
+ padded_width, padded_height = calc_padded_size(new_width, new_height)
106
+
107
+ if transposed:
108
+ padded_width, padded_height = padded_height, padded_width
109
+
110
+ return padded_width, padded_height
111
+
112
+ def pad_to_max_num_crops_tensor(images, max_crops=5):
113
+ """
114
+ images: B x 3 x H x W, B<=max_crops
115
+ """
116
+ B, _, H, W = images.shape
117
+ if B < max_crops:
118
+ pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
119
+ images = torch.cat([images, pad], dim=0)
120
+ return images
121
+
122
+
123
+ class Phi3VImageProcessor(BaseImageProcessor):
124
+ r"""
125
+ Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
126
+ for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
127
+
128
+ Args:
129
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
130
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
131
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
132
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
133
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
134
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
135
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
136
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
137
+ Whether to convert the image to RGB.
138
+ """
139
+
140
+ model_input_names = ["pixel_values"]
141
+
142
+ def __init__(
143
+ self,
144
+ num_crops: int = 1,
145
+ image_mean: Optional[Union[float, List[float]]] = None,
146
+ image_std: Optional[Union[float, List[float]]] = None,
147
+ do_convert_rgb: bool = True,
148
+ **kwargs,
149
+ ) -> None:
150
+ super().__init__(**kwargs)
151
+ self.num_crops = num_crops
152
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
153
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
154
+ self.do_convert_rgb = do_convert_rgb
155
+
156
+ def calc_num_image_tokens(
157
+ self,
158
+ images: ImageInput
159
+ ):
160
+ """ Calculate the number of image tokens for each image.
161
+ Args:
162
+ images (`ImageInput`):
163
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
164
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
165
+ """
166
+ images = make_list_of_images(images)
167
+
168
+ if not valid_images(images):
169
+ raise ValueError(
170
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
171
+ "torch.Tensor, tf.Tensor or jax.ndarray."
172
+ )
173
+
174
+ images = [image.convert('RGB') for image in images]
175
+ # (H, W, C)
176
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
177
+ shapes = [[im.size[1], im.size[0]] for im in elems]
178
+ num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
179
+ return num_img_tokens
180
+
181
+ def calc_num_image_tokens_from_image_size(self, width, height):
182
+ """
183
+ Calculate the number of image tokens for a given image size.
184
+ Args:
185
+ width (`int`): Width of the image.
186
+ height (`int`): Height of the image.
187
+ """
188
+ new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
189
+ num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
190
+ return num_img_tokens
191
+
192
+ def preprocess(
193
+ self,
194
+ images: ImageInput,
195
+ image_mean: Optional[Union[float, List[float]]] = None,
196
+ image_std: Optional[Union[float, List[float]]] = None,
197
+ do_convert_rgb: bool = None,
198
+ return_tensors: Optional[Union[str, TensorType]] = None,
199
+ ):
200
+ """
201
+ Args:
202
+ images (`ImageInput`):
203
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
204
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
205
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
206
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
207
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
208
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
209
+ `True`.
210
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
211
+ Whether to convert the image to RGB.
212
+ return_tensors (`str` or `TensorType`, *optional*):
213
+ The type of tensors to return. Can be one of:
214
+ - Unset: Return a list of `np.ndarray`.
215
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
216
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
217
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
218
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
219
+ """
220
+ image_mean = image_mean if image_mean is not None else self.image_mean
221
+ image_std = image_std if image_std is not None else self.image_std
222
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
223
+
224
+ images = make_list_of_images(images)
225
+
226
+ if not valid_images(images):
227
+ raise ValueError(
228
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
229
+ "torch.Tensor, tf.Tensor or jax.ndarray."
230
+ )
231
+
232
+ if do_convert_rgb:
233
+ images = [convert_to_rgb(image) for image in images]
234
+
235
+ image_sizes = []
236
+ img_processor = torchvision.transforms.Compose([
237
+ torchvision.transforms.ToTensor(),
238
+ torchvision.transforms.Normalize(image_mean, image_std)
239
+ ])
240
+
241
+ # PIL images
242
+ # HD_transform pad images to size of multiiply of 336, 336
243
+ # convert to RGB first
244
+ images = [image.convert('RGB') for image in images]
245
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
246
+ # tensor transform and normalize
247
+ hd_images = [img_processor(im) for im in elems]
248
+ # create global image
249
+ global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
250
+
251
+ # [(3, h, w)], where h, w is multiple of 336
252
+ shapes = [[im.size(1), im.size(2)] for im in hd_images]
253
+ num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
254
+ # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
255
+ # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
256
+ hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
257
+ # concat global image and local image
258
+ hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
259
+
260
+ # pad to max_num_crops
261
+ image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
262
+ image_transformed = torch.stack(image_transformed, dim=0)
263
+ image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
264
+ padded_images = image_transformed
265
+ image_sizes = shapes
266
+
267
+ data = {"pixel_values": padded_images,
268
+ "image_sizes": image_sizes,
269
+ "num_img_tokens": num_img_tokens
270
+ }
271
+
272
+ return BatchFeature(data=data, tensor_type=return_tensors)
273
+
274
+ AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
modeling_phi3_v.py ADDED
@@ -0,0 +1,1633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi-3-V model."""
17
+
18
+ import inspect
19
+ import math
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.utils import (
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_greater_or_equal_2_10,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+ from .configuration_phi3_v import Phi3VConfig
48
+ from .image_embedding_phi3_v import Phi3ImageEmbedding
49
+
50
+
51
+ try:
52
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
53
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
54
+
55
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
56
+ except ImportError:
57
+ pass
58
+
59
+ logger = logging.get_logger(__name__)
60
+
61
+ _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"
62
+ _CONFIG_FOR_DOC = "Phi3VConfig"
63
+
64
+ PHI3V_PRETRAINED_MODEL_ARCHIVE_LIST = [
65
+ "microsoft/Phi-3-vision-128k-instruct",
66
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
67
+ ]
68
+
69
+
70
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
71
+ class Phi3RMSNorm(nn.Module):
72
+ def __init__(self, hidden_size, eps=1e-6):
73
+ """
74
+ Phi3RMSNorm is equivalent to T5LayerNorm
75
+ """
76
+ super().__init__()
77
+ self.weight = nn.Parameter(torch.ones(hidden_size))
78
+ self.variance_epsilon = eps
79
+
80
+ def forward(self, hidden_states):
81
+ input_dtype = hidden_states.dtype
82
+ hidden_states = hidden_states.to(torch.float32)
83
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
84
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
85
+ return self.weight * hidden_states.to(input_dtype)
86
+
87
+
88
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
89
+ def _get_unpad_data(attention_mask):
90
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
91
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
92
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
93
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
94
+ return (
95
+ indices,
96
+ cu_seqlens,
97
+ max_seqlen_in_batch,
98
+ )
99
+
100
+
101
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
102
+ class Phi3RotaryEmbedding(nn.Module):
103
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
104
+ super().__init__()
105
+
106
+ self.dim = dim
107
+ self.max_position_embeddings = max_position_embeddings
108
+ self.base = base
109
+ self.register_buffer("inv_freq", None, persistent=False)
110
+
111
+ @torch.no_grad()
112
+ def forward(self, x, position_ids, seq_len=None):
113
+ # x: [bs, num_attention_heads, seq_len, head_size]
114
+ if self.inv_freq is None:
115
+ self.inv_freq = 1.0 / (
116
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
117
+ )
118
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
119
+ position_ids_expanded = position_ids[:, None, :].float()
120
+ # Force float32 since bfloat16 loses precision on long contexts
121
+ # See https://github.com/huggingface/transformers/pull/29285
122
+ device_type = x.device.type
123
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
124
+ with torch.autocast(device_type=device_type, enabled=False):
125
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
126
+ emb = torch.cat((freqs, freqs), dim=-1)
127
+ cos = emb.cos()
128
+ sin = emb.sin()
129
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
130
+
131
+
132
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
133
+ def __init__(self, dim, config, device=None):
134
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
135
+
136
+ self.short_factor = config.rope_scaling["short_factor"]
137
+ self.long_factor = config.rope_scaling["long_factor"]
138
+ self.original_max_position_embeddings = config.original_max_position_embeddings
139
+
140
+ @torch.no_grad()
141
+ def forward(self, x, position_ids, seq_len=None):
142
+ seq_len = torch.max(position_ids) + 1
143
+ if seq_len > self.original_max_position_embeddings:
144
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
145
+ else:
146
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
147
+
148
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
149
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
150
+
151
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
152
+ position_ids_expanded = position_ids[:, None, :].float()
153
+
154
+ # Force float32 since bfloat16 loses precision on long contexts
155
+ # See https://github.com/huggingface/transformers/pull/29285
156
+ device_type = x.device.type
157
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
158
+ with torch.autocast(device_type=device_type, enabled=False):
159
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
160
+ emb = torch.cat((freqs, freqs), dim=-1)
161
+
162
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
163
+ if scale <= 1.0:
164
+ scaling_factor = 1.0
165
+ else:
166
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
167
+
168
+ cos = emb.cos() * scaling_factor
169
+ sin = emb.sin() * scaling_factor
170
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
171
+
172
+
173
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
174
+ def __init__(self, dim, config, device=None):
175
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
176
+
177
+ self.short_factor = config.rope_scaling["short_factor"]
178
+ self.long_factor = config.rope_scaling["long_factor"]
179
+ self.original_max_position_embeddings = config.original_max_position_embeddings
180
+
181
+ @torch.no_grad()
182
+ def forward(self, x, position_ids, seq_len=None):
183
+ seq_len = torch.max(position_ids) + 1
184
+ if seq_len > self.original_max_position_embeddings:
185
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
186
+ else:
187
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
188
+
189
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
190
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
191
+
192
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
193
+ position_ids_expanded = position_ids[:, None, :].float()
194
+
195
+ # Force float32 since bfloat16 loses precision on long contexts
196
+ # See https://github.com/huggingface/transformers/pull/29285
197
+ device_type = x.device.type
198
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
199
+ with torch.autocast(device_type=device_type, enabled=False):
200
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
201
+ emb = torch.cat((freqs, freqs), dim=-1)
202
+
203
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
204
+ if scale <= 1.0:
205
+ scaling_factor = 1.0
206
+ else:
207
+ scaling_factor = 0.1 * math.log(scale) + 1.0
208
+
209
+ cos = emb.cos() * scaling_factor
210
+ sin = emb.sin() * scaling_factor
211
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
212
+
213
+
214
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
215
+ def rotate_half(x):
216
+ """Rotates half the hidden dims of the input."""
217
+ x1 = x[..., : x.shape[-1] // 2]
218
+ x2 = x[..., x.shape[-1] // 2 :]
219
+ return torch.cat((-x2, x1), dim=-1)
220
+
221
+
222
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
223
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
224
+ """Applies Rotary Position Embedding to the query and key tensors.
225
+
226
+ Args:
227
+ q (`torch.Tensor`): The query tensor.
228
+ k (`torch.Tensor`): The key tensor.
229
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
230
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
231
+ position_ids (`torch.Tensor`, *optional*):
232
+ Deprecated and unused.
233
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
234
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
235
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
236
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
237
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
238
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
239
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
240
+ Returns:
241
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
242
+ """
243
+ cos = cos.unsqueeze(unsqueeze_dim)
244
+ sin = sin.unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class Phi3MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+
254
+ self.config = config
255
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
256
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
257
+
258
+ self.activation_fn = ACT2FN[config.hidden_act]
259
+
260
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
261
+ up_states = self.gate_up_proj(hidden_states)
262
+
263
+ gate, up_states = up_states.chunk(2, dim=-1)
264
+ up_states = up_states * self.activation_fn(gate)
265
+
266
+ return self.down_proj(up_states)
267
+
268
+
269
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
270
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
271
+ """
272
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
273
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
274
+ """
275
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
276
+ if n_rep == 1:
277
+ return hidden_states
278
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
279
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
280
+
281
+
282
+ class Phi3Attention(nn.Module):
283
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
284
+
285
+ def __init__(self, config: Phi3VConfig, layer_idx: Optional[int] = None):
286
+ super().__init__()
287
+ self.config = config
288
+ self.layer_idx = layer_idx
289
+ if layer_idx is None:
290
+ logger.warning_once(
291
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
292
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
293
+ "when creating this class."
294
+ )
295
+
296
+ self.attention_dropout = config.attention_dropout
297
+ self.hidden_size = config.hidden_size
298
+ self.num_heads = config.num_attention_heads
299
+ self.head_dim = self.hidden_size // self.num_heads
300
+ self.num_key_value_heads = config.num_key_value_heads
301
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
302
+ self.max_position_embeddings = config.max_position_embeddings
303
+ self.original_max_position_embeddings = config.original_max_position_embeddings
304
+ self.rope_theta = config.rope_theta
305
+ self.rope_scaling = config.rope_scaling
306
+ self.is_causal = True
307
+
308
+ if (self.head_dim * self.num_heads) != self.hidden_size:
309
+ raise ValueError(
310
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
311
+ f" and `num_heads`: {self.num_heads})."
312
+ )
313
+
314
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
315
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
316
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
317
+ self._init_rope()
318
+
319
+ def _init_rope(self):
320
+ if self.rope_scaling is None:
321
+ self.rotary_emb = Phi3RotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.rope_theta,
325
+ )
326
+ else:
327
+ scaling_type = self.config.rope_scaling["type"]
328
+ if scaling_type == "su":
329
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
330
+ elif scaling_type == "yarn":
331
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
332
+ else:
333
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states: torch.Tensor,
338
+ attention_mask: Optional[torch.Tensor] = None,
339
+ position_ids: Optional[torch.LongTensor] = None,
340
+ past_key_value: Optional[Cache] = None,
341
+ output_attentions: bool = False,
342
+ use_cache: bool = False,
343
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
344
+ logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
345
+
346
+ bsz, q_len, _ = hidden_states.size()
347
+
348
+ qkv = self.qkv_proj(hidden_states)
349
+ query_pos = self.num_heads * self.head_dim
350
+ query_states = qkv[..., :query_pos]
351
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
352
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
353
+
354
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
355
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
356
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
357
+
358
+ kv_seq_len = key_states.shape[-2]
359
+ if past_key_value is not None:
360
+ if self.layer_idx is None:
361
+ raise ValueError(
362
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
363
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
364
+ "with a layer index."
365
+ )
366
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
367
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
368
+
369
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
370
+
371
+ if past_key_value is not None:
372
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
373
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
374
+
375
+ # repeat k/v heads if n_kv_heads < n_heads
376
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
377
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
378
+
379
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
380
+
381
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
382
+ raise ValueError(
383
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
384
+ f" {attn_weights.size()}"
385
+ )
386
+
387
+ if attention_mask is not None:
388
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
389
+ raise ValueError(
390
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
391
+ )
392
+ attn_weights = attn_weights + attention_mask
393
+
394
+ # upcast attention to fp32
395
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
396
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
397
+
398
+ attn_output = torch.matmul(attn_weights, value_states)
399
+
400
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
401
+ raise ValueError(
402
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
403
+ f" {attn_output.size()}"
404
+ )
405
+
406
+ attn_output = attn_output.transpose(1, 2).contiguous()
407
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
408
+
409
+ attn_output = self.o_proj(attn_output)
410
+
411
+ if not output_attentions:
412
+ attn_weights = None
413
+
414
+ return attn_output, attn_weights, past_key_value
415
+
416
+
417
+ class Phi3FlashAttention2(Phi3Attention):
418
+ """
419
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
420
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
421
+ flash attention and deal with padding tokens in case the input contains any of them.
422
+ """
423
+
424
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
425
+ def __init__(self, *args, **kwargs):
426
+ super().__init__(*args, **kwargs)
427
+
428
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
429
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
430
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
431
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
432
+
433
+ def forward(
434
+ self,
435
+ hidden_states: torch.Tensor,
436
+ attention_mask: Optional[torch.LongTensor] = None,
437
+ position_ids: Optional[torch.LongTensor] = None,
438
+ past_key_value: Optional[Cache] = None,
439
+ output_attentions: bool = False,
440
+ use_cache: bool = False,
441
+ **kwargs,
442
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
443
+ # Phi3FlashAttention2 attention does not support output_attentions
444
+
445
+ if not _flash_supports_window_size:
446
+ logger.warning_once(
447
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
448
+ )
449
+ raise ValueError("The current flash attention version does not support sliding window attention.")
450
+
451
+ output_attentions = False
452
+
453
+ if "padding_mask" in kwargs:
454
+ warnings.warn(
455
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
456
+ )
457
+
458
+ # overwrite attention_mask with padding_mask
459
+ attention_mask = kwargs.pop("padding_mask")
460
+
461
+ bsz, q_len, _ = hidden_states.size()
462
+
463
+ qkv = self.qkv_proj(hidden_states)
464
+ query_pos = self.num_heads * self.head_dim
465
+ query_states = qkv[..., :query_pos]
466
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
467
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
468
+
469
+ # Flash attention requires the input to have the shape
470
+ # batch_size x seq_length x head_dim x hidden_dim
471
+ # therefore we just need to keep the original shape
472
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
473
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
474
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
475
+
476
+ kv_seq_len = key_states.shape[-2]
477
+ if past_key_value is not None:
478
+ if self.layer_idx is None:
479
+ raise ValueError(
480
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
481
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
482
+ "with a layer index."
483
+ )
484
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
485
+
486
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
487
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
488
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
489
+
490
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
491
+
492
+ use_sliding_windows = (
493
+ _flash_supports_window_size
494
+ and getattr(self.config, "sliding_window", None) is not None
495
+ and kv_seq_len > self.config.sliding_window
496
+ )
497
+
498
+ if past_key_value is not None:
499
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
500
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
501
+ if (
502
+ getattr(self.config, "sliding_window", None) is not None
503
+ and kv_seq_len > self.config.sliding_window
504
+ and cache_has_contents
505
+ ):
506
+ slicing_tokens = 1 - self.config.sliding_window
507
+
508
+ past_key = past_key_value[self.layer_idx][0]
509
+ past_value = past_key_value[self.layer_idx][1]
510
+
511
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
512
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
513
+
514
+ if past_key.shape[-2] != self.config.sliding_window - 1:
515
+ raise ValueError(
516
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
517
+ f" {past_key.shape}"
518
+ )
519
+
520
+ if attention_mask is not None:
521
+ attention_mask = attention_mask[:, slicing_tokens:]
522
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
523
+
524
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
525
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
526
+
527
+ # repeat k/v heads if n_kv_heads < n_heads
528
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
529
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
530
+
531
+ attn_dropout = self.attention_dropout if self.training else 0.0
532
+
533
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
534
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
535
+ # cast them back in the correct dtype just to be sure everything works as expected.
536
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
537
+ # in fp32.
538
+
539
+ if query_states.dtype == torch.float32:
540
+ if torch.is_autocast_enabled():
541
+ target_dtype = torch.get_autocast_gpu_dtype()
542
+ # Handle the case where the model is quantized
543
+ elif hasattr(self.config, "_pre_quantization_dtype"):
544
+ target_dtype = self.config._pre_quantization_dtype
545
+ else:
546
+ target_dtype = self.qkv_proj.weight.dtype
547
+
548
+ logger.warning_once(
549
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
550
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
551
+ f" {target_dtype}."
552
+ )
553
+
554
+ query_states = query_states.to(target_dtype)
555
+ key_states = key_states.to(target_dtype)
556
+ value_states = value_states.to(target_dtype)
557
+
558
+ # Reashape to the expected shape for Flash Attention
559
+ query_states = query_states.transpose(1, 2)
560
+ key_states = key_states.transpose(1, 2)
561
+ value_states = value_states.transpose(1, 2)
562
+
563
+ attn_output = self._flash_attention_forward(
564
+ query_states,
565
+ key_states,
566
+ value_states,
567
+ attention_mask,
568
+ q_len,
569
+ dropout=attn_dropout,
570
+ use_sliding_windows=use_sliding_windows,
571
+ )
572
+
573
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
574
+ attn_output = self.o_proj(attn_output)
575
+
576
+ if not output_attentions:
577
+ attn_weights = None
578
+
579
+ return attn_output, attn_weights, past_key_value
580
+
581
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
582
+ def _flash_attention_forward(
583
+ self,
584
+ query_states,
585
+ key_states,
586
+ value_states,
587
+ attention_mask,
588
+ query_length,
589
+ dropout=0.0,
590
+ softmax_scale=None,
591
+ use_sliding_windows=False,
592
+ ):
593
+ """
594
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
595
+ first unpad the input, then computes the attention scores and pad the final attention scores.
596
+
597
+ Args:
598
+ query_states (`torch.Tensor`):
599
+ Input query states to be passed to Flash Attention API
600
+ key_states (`torch.Tensor`):
601
+ Input key states to be passed to Flash Attention API
602
+ value_states (`torch.Tensor`):
603
+ Input value states to be passed to Flash Attention API
604
+ attention_mask (`torch.Tensor`):
605
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
606
+ position of padding tokens and 1 for the position of non-padding tokens.
607
+ dropout (`float`):
608
+ Attention dropout
609
+ softmax_scale (`float`, *optional*):
610
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
611
+ use_sliding_windows (`bool`, *optional*):
612
+ Whether to activate sliding window attention.
613
+ """
614
+ if not self._flash_attn_uses_top_left_mask:
615
+ causal = self.is_causal
616
+ else:
617
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
618
+ causal = self.is_causal and query_length != 1
619
+
620
+ # Contains at least one padding token in the sequence
621
+ if attention_mask is not None:
622
+ batch_size = query_states.shape[0]
623
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
624
+ query_states, key_states, value_states, attention_mask, query_length
625
+ )
626
+
627
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
628
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
629
+
630
+ if not use_sliding_windows:
631
+ attn_output_unpad = flash_attn_varlen_func(
632
+ query_states,
633
+ key_states,
634
+ value_states,
635
+ cu_seqlens_q=cu_seqlens_q,
636
+ cu_seqlens_k=cu_seqlens_k,
637
+ max_seqlen_q=max_seqlen_in_batch_q,
638
+ max_seqlen_k=max_seqlen_in_batch_k,
639
+ dropout_p=dropout,
640
+ softmax_scale=softmax_scale,
641
+ causal=causal,
642
+ )
643
+ else:
644
+ attn_output_unpad = flash_attn_varlen_func(
645
+ query_states,
646
+ key_states,
647
+ value_states,
648
+ cu_seqlens_q=cu_seqlens_q,
649
+ cu_seqlens_k=cu_seqlens_k,
650
+ max_seqlen_q=max_seqlen_in_batch_q,
651
+ max_seqlen_k=max_seqlen_in_batch_k,
652
+ dropout_p=dropout,
653
+ softmax_scale=softmax_scale,
654
+ causal=causal,
655
+ window_size=(self.config.sliding_window, self.config.sliding_window),
656
+ )
657
+
658
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
659
+ else:
660
+ if not use_sliding_windows:
661
+ attn_output = flash_attn_func(
662
+ query_states,
663
+ key_states,
664
+ value_states,
665
+ dropout,
666
+ softmax_scale=softmax_scale,
667
+ causal=causal,
668
+ )
669
+ else:
670
+ attn_output = flash_attn_func(
671
+ query_states,
672
+ key_states,
673
+ value_states,
674
+ dropout,
675
+ softmax_scale=softmax_scale,
676
+ causal=causal,
677
+ window_size=(self.config.sliding_window, self.config.sliding_window),
678
+ )
679
+
680
+ return attn_output
681
+
682
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
683
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
684
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
685
+
686
+ # On the first iteration we need to properly re-create the padding mask
687
+ # by slicing it on the proper place
688
+ if kv_seq_len != attention_mask.shape[-1]:
689
+ attention_mask_num_tokens = attention_mask.shape[-1]
690
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
691
+
692
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
693
+
694
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
695
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
696
+
697
+ if query_length == kv_seq_len:
698
+ query_layer = index_first_axis(
699
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
700
+ )
701
+ cu_seqlens_q = cu_seqlens_k
702
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
703
+ indices_q = indices_k
704
+ elif query_length == 1:
705
+ max_seqlen_in_batch_q = 1
706
+ cu_seqlens_q = torch.arange(
707
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
708
+ ) # There is a memcpy here, that is very bad.
709
+ indices_q = cu_seqlens_q[:-1]
710
+ query_layer = query_layer.squeeze(1)
711
+ else:
712
+ # The -q_len: slice assumes left padding.
713
+ attention_mask = attention_mask[:, -query_length:]
714
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
715
+
716
+ return (
717
+ query_layer,
718
+ key_layer,
719
+ value_layer,
720
+ indices_q,
721
+ (cu_seqlens_q, cu_seqlens_k),
722
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
723
+ )
724
+
725
+
726
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
727
+ # TODO @Arthur no longer copied from LLama after static cache
728
+ class Phi3SdpaAttention(Phi3Attention):
729
+ """
730
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
731
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
732
+ SDPA API.
733
+ """
734
+
735
+ # Adapted from Phi3Attention.forward
736
+ def forward(
737
+ self,
738
+ hidden_states: torch.Tensor,
739
+ attention_mask: Optional[torch.Tensor] = None,
740
+ position_ids: Optional[torch.LongTensor] = None,
741
+ past_key_value: Optional[Cache] = None,
742
+ output_attentions: bool = False,
743
+ use_cache: bool = False,
744
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
745
+ if output_attentions:
746
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
747
+ logger.warning_once(
748
+ "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
749
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
750
+ )
751
+ return super().forward(
752
+ hidden_states=hidden_states,
753
+ attention_mask=attention_mask,
754
+ position_ids=position_ids,
755
+ past_key_value=past_key_value,
756
+ output_attentions=output_attentions,
757
+ use_cache=use_cache,
758
+ )
759
+
760
+ bsz, q_len, _ = hidden_states.size()
761
+
762
+ qkv = self.qkv_proj(hidden_states)
763
+ query_pos = self.num_heads * self.head_dim
764
+ query_states = qkv[..., :query_pos]
765
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
766
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
767
+
768
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
769
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
770
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
771
+
772
+ kv_seq_len = key_states.shape[-2]
773
+ if past_key_value is not None:
774
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
775
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
776
+
777
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
778
+
779
+ if past_key_value is not None:
780
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
781
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
782
+
783
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
784
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
785
+
786
+ if attention_mask is not None:
787
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
788
+ raise ValueError(
789
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
790
+ )
791
+
792
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
793
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
794
+ if query_states.device.type == "cuda" and attention_mask is not None:
795
+ query_states = query_states.contiguous()
796
+ key_states = key_states.contiguous()
797
+ value_states = value_states.contiguous()
798
+
799
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
800
+ query_states,
801
+ key_states,
802
+ value_states,
803
+ attn_mask=attention_mask,
804
+ dropout_p=self.attention_dropout if self.training else 0.0,
805
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
806
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
807
+ )
808
+
809
+ attn_output = attn_output.transpose(1, 2).contiguous()
810
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
811
+
812
+ attn_output = self.o_proj(attn_output)
813
+
814
+ return attn_output, None, past_key_value
815
+
816
+
817
+ PHI3_ATTENTION_CLASSES = {
818
+ "eager": Phi3Attention,
819
+ "flash_attention_2": Phi3FlashAttention2,
820
+ "sdpa": Phi3SdpaAttention,
821
+ }
822
+
823
+
824
+ class Phi3DecoderLayer(nn.Module):
825
+ def __init__(self, config: Phi3VConfig, layer_idx: int):
826
+ super().__init__()
827
+
828
+ self.config = config
829
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
830
+
831
+ self.mlp = Phi3MLP(config)
832
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
833
+
834
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
835
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
836
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
837
+
838
+ def forward(
839
+ self,
840
+ hidden_states: torch.Tensor,
841
+ attention_mask: Optional[torch.Tensor] = None,
842
+ position_ids: Optional[torch.LongTensor] = None,
843
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
844
+ output_attentions: Optional[bool] = False,
845
+ use_cache: Optional[bool] = False,
846
+ **kwargs,
847
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
848
+ if "padding_mask" in kwargs:
849
+ warnings.warn(
850
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
851
+ )
852
+ """
853
+ Args:
854
+ hidden_states (`torch.FloatTensor`):
855
+ input to the layer of shape `(batch, seq_len, embed_dim)`
856
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
857
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
858
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
859
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
860
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
861
+ output_attentions (`bool`, *optional*):
862
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
863
+ returned tensors for more detail.
864
+ use_cache (`bool`, *optional*):
865
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
866
+ (see `past_key_values`).
867
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
868
+ """
869
+
870
+ residual = hidden_states
871
+
872
+ hidden_states = self.input_layernorm(hidden_states)
873
+
874
+ # Self Attention
875
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
876
+ hidden_states=hidden_states,
877
+ attention_mask=attention_mask,
878
+ position_ids=position_ids,
879
+ past_key_value=past_key_value,
880
+ output_attentions=output_attentions,
881
+ use_cache=use_cache,
882
+ )
883
+
884
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
885
+
886
+ residual = hidden_states
887
+ hidden_states = self.post_attention_layernorm(hidden_states)
888
+ hidden_states = self.mlp(hidden_states)
889
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
890
+
891
+ outputs = (hidden_states,)
892
+
893
+ if output_attentions:
894
+ outputs += (self_attn_weights,)
895
+
896
+ if use_cache:
897
+ outputs += (present_key_value,)
898
+
899
+ return outputs
900
+
901
+
902
+ PHI3V_START_DOCSTRING = r"""
903
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
904
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
905
+ etc.)
906
+
907
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
908
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
909
+ and behavior.
910
+
911
+ Parameters:
912
+ config ([`Phi3VConfig`]):
913
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
914
+ load the weights associated with the model, only the configuration. Check out the
915
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
916
+ """
917
+
918
+
919
+ @add_start_docstrings(
920
+ "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
921
+ PHI3V_START_DOCSTRING,
922
+ )
923
+ class Phi3VPreTrainedModel(PreTrainedModel):
924
+ config_class = Phi3VConfig
925
+ base_model_prefix = "model"
926
+ supports_gradient_checkpointing = True
927
+ _no_split_modules = ["Phi3DecoderLayer"]
928
+ _skip_keys_device_placement = "past_key_values"
929
+ _supports_flash_attn_2 = True
930
+ _supports_sdpa = False
931
+ _supports_cache_class = True
932
+
933
+ _version = "0.0.5"
934
+
935
+ def _init_weights(self, module):
936
+ std = self.config.initializer_range
937
+ if isinstance(module, nn.Linear):
938
+ module.weight.data.normal_(mean=0.0, std=std)
939
+ if module.bias is not None:
940
+ module.bias.data.zero_()
941
+ elif isinstance(module, nn.Embedding):
942
+ module.weight.data.normal_(mean=0.0, std=std)
943
+ if module.padding_idx is not None:
944
+ module.weight.data[module.padding_idx].zero_()
945
+
946
+
947
+ PHI3V_INPUTS_DOCSTRING = r"""
948
+ Args:
949
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
950
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
951
+ it.
952
+
953
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
954
+ [`PreTrainedTokenizer.__call__`] for details.
955
+
956
+ [What are input IDs?](../glossary#input-ids)
957
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
958
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
959
+
960
+ - 1 for tokens that are **not masked**,
961
+ - 0 for tokens that are **masked**.
962
+
963
+ [What are attention masks?](../glossary#attention-mask)
964
+
965
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
966
+ [`PreTrainedTokenizer.__call__`] for details.
967
+
968
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
969
+ `past_key_values`).
970
+
971
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
972
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
973
+ information on the default strategy.
974
+
975
+ - 1 indicates the head is **not masked**,
976
+ - 0 indicates the head is **masked**.
977
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
978
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
979
+ config.n_positions - 1]`.
980
+
981
+ [What are position IDs?](../glossary#position-ids)
982
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
983
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
984
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
985
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
986
+
987
+ Two formats are allowed:
988
+ - a [`~cache_utils.Cache`] instance;
989
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
990
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
991
+ cache format.
992
+
993
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
994
+ legacy cache format will be returned.
995
+
996
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
997
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
998
+ of shape `(batch_size, sequence_length)`.
999
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1000
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1001
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1002
+ model's internal embedding lookup matrix.
1003
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
1004
+ The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`].
1005
+ See [`Phi3ImageProcessor.__call__`] for details.
1006
+ image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
1007
+ The sizes of the images in the batch, being (height, width) for each image.
1008
+ use_cache (`bool`, *optional*):
1009
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1010
+ `past_key_values`).
1011
+ output_attentions (`bool`, *optional*):
1012
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1013
+ tensors for more detail.
1014
+ output_hidden_states (`bool`, *optional*):
1015
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1016
+ more detail.
1017
+ return_dict (`bool`, *optional*):
1018
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1019
+ """
1020
+
1021
+
1022
+ @add_start_docstrings(
1023
+ "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
1024
+ PHI3V_START_DOCSTRING,
1025
+ )
1026
+ class Phi3VModel(Phi3VPreTrainedModel):
1027
+ """
1028
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1029
+
1030
+ Args:
1031
+ config: Phi3Config
1032
+ """
1033
+
1034
+ def __init__(self, config: Phi3VConfig):
1035
+ super().__init__(config)
1036
+ self.padding_idx = config.pad_token_id
1037
+ self.vocab_size = config.vocab_size
1038
+
1039
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1040
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1041
+
1042
+ self.vision_embed_tokens = None
1043
+ if isinstance(config.embd_layer, dict):
1044
+ # vision embedding layer
1045
+ embedding_config = {
1046
+ 'embedding_cls': config.embd_layer['embedding_cls'],
1047
+ **config.embd_layer
1048
+ }
1049
+ self.vision_embed_tokens = Phi3ImageEmbedding(config, wte=self.embed_tokens, **embedding_config)
1050
+ # # set wte the same for vision embedding
1051
+ # self.vision_embed_tokens.wte.weight = self.embed_tokens.weight
1052
+
1053
+ self.layers = nn.ModuleList(
1054
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1055
+ )
1056
+ self._attn_implementation = config._attn_implementation
1057
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1058
+
1059
+ self.gradient_checkpointing = False
1060
+ # Initialize weights and apply final processing
1061
+ self.post_init()
1062
+
1063
+ def get_input_embeddings(self):
1064
+ return self.embed_tokens
1065
+
1066
+ def set_input_embeddings(self, value):
1067
+ self.embed_tokens = value
1068
+
1069
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1070
+ def forward(
1071
+ self,
1072
+ input_ids: torch.LongTensor = None,
1073
+ attention_mask: Optional[torch.Tensor] = None,
1074
+ position_ids: Optional[torch.LongTensor] = None,
1075
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1076
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1077
+ pixel_values: Optional[torch.FloatTensor] = None,
1078
+ image_sizes: Optional[torch.LongTensor] = None,
1079
+ use_cache: Optional[bool] = None,
1080
+ output_attentions: Optional[bool] = None,
1081
+ output_hidden_states: Optional[bool] = None,
1082
+ return_dict: Optional[bool] = None,
1083
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1084
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1085
+ output_hidden_states = (
1086
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1087
+ )
1088
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1089
+
1090
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1091
+
1092
+ # retrieve input_ids and inputs_embeds
1093
+ if input_ids is not None and inputs_embeds is not None:
1094
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1095
+ elif input_ids is not None:
1096
+ batch_size, seq_length = input_ids.shape[:2]
1097
+ elif inputs_embeds is not None:
1098
+ batch_size, seq_length = inputs_embeds.shape[:2]
1099
+ else:
1100
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1101
+
1102
+ past_key_values_length = 0
1103
+
1104
+ if self.gradient_checkpointing and self.training:
1105
+ if use_cache:
1106
+ logger.warning_once(
1107
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1108
+ )
1109
+ use_cache = False
1110
+
1111
+ if use_cache:
1112
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1113
+ if use_legacy_cache:
1114
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1115
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1116
+
1117
+ if position_ids is None:
1118
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1119
+ position_ids = torch.arange(
1120
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1121
+ )
1122
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1123
+ else:
1124
+ position_ids = position_ids.view(-1, seq_length).long()
1125
+
1126
+ if inputs_embeds is None:
1127
+ if pixel_values is not None and image_sizes is not None:
1128
+ assert self.vision_embed_tokens is not None, "Vision embedding layer is not defined"
1129
+ inputs_embeds = self.vision_embed_tokens(input_ids, pixel_values=pixel_values, image_sizes=image_sizes)
1130
+ else:
1131
+ inputs_embeds = self.embed_tokens(input_ids)
1132
+
1133
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1134
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1135
+ if is_padding_right:
1136
+ raise ValueError(
1137
+ "You are attempting to perform batched generation with padding_side='right'"
1138
+ " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
1139
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1140
+ )
1141
+
1142
+ if self._attn_implementation == "flash_attention_2":
1143
+ # 2d mask is passed through the layers
1144
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1145
+ else:
1146
+ # 4d mask is passed through the layers
1147
+ attention_mask = _prepare_4d_causal_attention_mask(
1148
+ attention_mask,
1149
+ (batch_size, seq_length),
1150
+ inputs_embeds,
1151
+ past_key_values_length,
1152
+ sliding_window=self.config.sliding_window,
1153
+ )
1154
+
1155
+ hidden_states = inputs_embeds
1156
+
1157
+ # decoder layers
1158
+ all_hidden_states = () if output_hidden_states else None
1159
+ all_self_attns = () if output_attentions else None
1160
+ next_decoder_cache = None
1161
+
1162
+ for decoder_layer in self.layers:
1163
+ if output_hidden_states:
1164
+ all_hidden_states += (hidden_states,)
1165
+
1166
+ if self.gradient_checkpointing and self.training:
1167
+ layer_outputs = self._gradient_checkpointing_func(
1168
+ decoder_layer.__call__,
1169
+ hidden_states,
1170
+ attention_mask,
1171
+ position_ids,
1172
+ past_key_values,
1173
+ output_attentions,
1174
+ use_cache,
1175
+ )
1176
+ else:
1177
+ layer_outputs = decoder_layer(
1178
+ hidden_states,
1179
+ attention_mask=attention_mask,
1180
+ position_ids=position_ids,
1181
+ past_key_value=past_key_values,
1182
+ output_attentions=output_attentions,
1183
+ use_cache=use_cache,
1184
+ )
1185
+
1186
+ hidden_states = layer_outputs[0]
1187
+
1188
+ if use_cache:
1189
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1190
+
1191
+ if output_attentions:
1192
+ all_self_attns += (layer_outputs[1],)
1193
+
1194
+ hidden_states = self.norm(hidden_states)
1195
+
1196
+ # add hidden states from the last decoder layer
1197
+ if output_hidden_states:
1198
+ all_hidden_states += (hidden_states,)
1199
+
1200
+ next_cache = None
1201
+ if use_cache:
1202
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1203
+ if not return_dict:
1204
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1205
+ return BaseModelOutputWithPast(
1206
+ last_hidden_state=hidden_states,
1207
+ past_key_values=next_cache,
1208
+ hidden_states=all_hidden_states,
1209
+ attentions=all_self_attns,
1210
+ )
1211
+
1212
+
1213
+ class Phi3VForCausalLM(Phi3VPreTrainedModel):
1214
+ _tied_weights_keys = ["lm_head.weight"]
1215
+
1216
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1217
+ def __init__(self, config):
1218
+ super().__init__(config)
1219
+ self.model = Phi3VModel(config)
1220
+ self.vocab_size = config.vocab_size
1221
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1222
+
1223
+ # Initialize weights and apply final processing
1224
+ self.post_init()
1225
+
1226
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1227
+ def get_input_embeddings(self):
1228
+ return self.model.embed_tokens
1229
+
1230
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1231
+ def set_input_embeddings(self, value):
1232
+ self.model.embed_tokens = value
1233
+
1234
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1235
+ def get_output_embeddings(self):
1236
+ return self.lm_head
1237
+
1238
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1239
+ def set_output_embeddings(self, new_embeddings):
1240
+ self.lm_head = new_embeddings
1241
+
1242
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1243
+ def set_decoder(self, decoder):
1244
+ self.model = decoder
1245
+
1246
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1247
+ def get_decoder(self):
1248
+ return self.model
1249
+
1250
+ # Ignore copy
1251
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1252
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1253
+ def forward(
1254
+ self,
1255
+ input_ids: torch.LongTensor = None,
1256
+ attention_mask: Optional[torch.Tensor] = None,
1257
+ position_ids: Optional[torch.LongTensor] = None,
1258
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1259
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1260
+ pixel_values: Optional[torch.FloatTensor] = None,
1261
+ image_sizes: Optional[torch.LongTensor] = None,
1262
+ labels: Optional[torch.LongTensor] = None,
1263
+ use_cache: Optional[bool] = None,
1264
+ output_attentions: Optional[bool] = None,
1265
+ output_hidden_states: Optional[bool] = None,
1266
+ return_dict: Optional[bool] = None,
1267
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1268
+ r"""
1269
+ Args:
1270
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1271
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1272
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1273
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1274
+
1275
+ Returns:
1276
+
1277
+ Example:
1278
+
1279
+ ```python
1280
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1281
+
1282
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1283
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1284
+
1285
+ >>> prompt = "This is an example script ."
1286
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1287
+
1288
+ >>> # Generate
1289
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1290
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1291
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1292
+ ```"""
1293
+
1294
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1295
+ output_hidden_states = (
1296
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1297
+ )
1298
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1299
+
1300
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1301
+ outputs = self.model(
1302
+ input_ids=input_ids,
1303
+ attention_mask=attention_mask,
1304
+ position_ids=position_ids,
1305
+ past_key_values=past_key_values,
1306
+ inputs_embeds=inputs_embeds,
1307
+ pixel_values=pixel_values,
1308
+ image_sizes=image_sizes,
1309
+ use_cache=use_cache,
1310
+ output_attentions=output_attentions,
1311
+ output_hidden_states=output_hidden_states,
1312
+ return_dict=return_dict,
1313
+ )
1314
+
1315
+ hidden_states = outputs[0]
1316
+ logits = self.lm_head(hidden_states)
1317
+ logits = logits.float()
1318
+
1319
+ loss = None
1320
+ if labels is not None:
1321
+ # Shift so that tokens < n predict n
1322
+ shift_logits = logits[..., :-1, :].contiguous()
1323
+ shift_labels = labels[..., 1:].contiguous()
1324
+ # Flatten the tokens
1325
+ loss_fct = CrossEntropyLoss()
1326
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1327
+ shift_labels = shift_labels.view(-1)
1328
+ # Enable model parallelism
1329
+ shift_labels = shift_labels.to(shift_logits.device)
1330
+ loss = loss_fct(shift_logits, shift_labels)
1331
+
1332
+ if not return_dict:
1333
+ output = (logits,) + outputs[1:]
1334
+ return (loss,) + output if loss is not None else output
1335
+
1336
+ return CausalLMOutputWithPast(
1337
+ loss=loss,
1338
+ logits=logits,
1339
+ past_key_values=outputs.past_key_values,
1340
+ hidden_states=outputs.hidden_states,
1341
+ attentions=outputs.attentions,
1342
+ )
1343
+
1344
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1345
+ def prepare_inputs_for_generation(
1346
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, pixel_values=None, image_sizes=None, **kwargs
1347
+ ):
1348
+ if past_key_values is not None:
1349
+ if isinstance(past_key_values, Cache):
1350
+ cache_length = past_key_values.get_seq_length()
1351
+ past_length = past_key_values.seen_tokens
1352
+ max_cache_length = past_key_values.get_max_length()
1353
+ else:
1354
+ cache_length = past_length = past_key_values[0][0].shape[2]
1355
+ max_cache_length = None
1356
+
1357
+ # Keep only the unprocessed tokens:
1358
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1359
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1360
+ # input)
1361
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1362
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1363
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1364
+ # input_ids based on the past_length.
1365
+ elif past_length < input_ids.shape[1]:
1366
+ input_ids = input_ids[:, past_length:]
1367
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1368
+
1369
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1370
+ if (
1371
+ max_cache_length is not None
1372
+ and attention_mask is not None
1373
+ and cache_length + input_ids.shape[1] > max_cache_length
1374
+ ):
1375
+ attention_mask = attention_mask[:, -max_cache_length:]
1376
+
1377
+ position_ids = kwargs.get("position_ids", None)
1378
+ if attention_mask is not None and position_ids is None:
1379
+ # create position_ids on the fly for batch generation
1380
+ position_ids = attention_mask.long().cumsum(-1) - 1
1381
+ position_ids.masked_fill_(attention_mask == 0, 1)
1382
+ if past_key_values:
1383
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1384
+
1385
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1386
+ if inputs_embeds is not None and past_key_values is None:
1387
+ model_inputs = {"inputs_embeds": inputs_embeds}
1388
+ else:
1389
+ model_inputs = {"input_ids": input_ids}
1390
+
1391
+ model_inputs.update(
1392
+ {
1393
+ "position_ids": position_ids,
1394
+ "past_key_values": past_key_values,
1395
+ "use_cache": kwargs.get("use_cache"),
1396
+ "attention_mask": attention_mask,
1397
+ "pixel_values": pixel_values,
1398
+ "image_sizes": image_sizes,
1399
+ }
1400
+ )
1401
+ return model_inputs
1402
+
1403
+ @staticmethod
1404
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1405
+ def _reorder_cache(past_key_values, beam_idx):
1406
+ reordered_past = ()
1407
+ for layer_past in past_key_values:
1408
+ reordered_past += (
1409
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1410
+ )
1411
+ return reordered_past
1412
+
1413
+
1414
+ @add_start_docstrings(
1415
+ """
1416
+ The [`Phi3VModel`] with a sequence classification head on top (linear layer).
1417
+
1418
+ [`Phi3VForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1419
+ (e.g. GPT-2) do.
1420
+
1421
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1422
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1423
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1424
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1425
+ each row of the batch).
1426
+ """,
1427
+ PHI3V_START_DOCSTRING,
1428
+ )
1429
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1430
+ class Phi3VForSequenceClassification(Phi3VPreTrainedModel):
1431
+ def __init__(self, config):
1432
+ super().__init__(config)
1433
+ self.num_labels = config.num_labels
1434
+ self.model = Phi3VModel(config)
1435
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1436
+
1437
+ # Initialize weights and apply final processing
1438
+ self.post_init()
1439
+
1440
+ def get_input_embeddings(self):
1441
+ return self.model.embed_tokens
1442
+
1443
+ def set_input_embeddings(self, value):
1444
+ self.model.embed_tokens = value
1445
+
1446
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1447
+ def forward(
1448
+ self,
1449
+ input_ids: torch.LongTensor = None,
1450
+ attention_mask: Optional[torch.Tensor] = None,
1451
+ position_ids: Optional[torch.LongTensor] = None,
1452
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1453
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1454
+ pixel_values: Optional[torch.FloatTensor] = None,
1455
+ image_sizes: Optional[torch.LongTensor] = None,
1456
+ labels: Optional[torch.LongTensor] = None,
1457
+ use_cache: Optional[bool] = None,
1458
+ output_attentions: Optional[bool] = None,
1459
+ output_hidden_states: Optional[bool] = None,
1460
+ return_dict: Optional[bool] = None,
1461
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1462
+ r"""
1463
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1464
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1465
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1466
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1467
+ """
1468
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1469
+
1470
+ model_outputs = self.model(
1471
+ input_ids,
1472
+ attention_mask=attention_mask,
1473
+ position_ids=position_ids,
1474
+ past_key_values=past_key_values,
1475
+ inputs_embeds=inputs_embeds,
1476
+ pixel_values=pixel_values,
1477
+ image_sizes=image_sizes,
1478
+ use_cache=use_cache,
1479
+ output_attentions=output_attentions,
1480
+ output_hidden_states=output_hidden_states,
1481
+ return_dict=return_dict,
1482
+ )
1483
+ hidden_states = model_outputs[0]
1484
+ logits = self.score(hidden_states)
1485
+
1486
+ if input_ids is not None:
1487
+ batch_size = input_ids.shape[0]
1488
+ else:
1489
+ batch_size = inputs_embeds.shape[0]
1490
+
1491
+ if self.config.pad_token_id is None and batch_size != 1:
1492
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1493
+ if self.config.pad_token_id is None:
1494
+ sequence_lengths = -1
1495
+ else:
1496
+ if input_ids is not None:
1497
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1498
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1499
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1500
+ sequence_lengths = sequence_lengths.to(logits.device)
1501
+ else:
1502
+ sequence_lengths = -1
1503
+
1504
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1505
+
1506
+ loss = None
1507
+ if labels is not None:
1508
+ labels = labels.to(logits.device)
1509
+ if self.config.problem_type is None:
1510
+ if self.num_labels == 1:
1511
+ self.config.problem_type = "regression"
1512
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1513
+ self.config.problem_type = "single_label_classification"
1514
+ else:
1515
+ self.config.problem_type = "multi_label_classification"
1516
+
1517
+ if self.config.problem_type == "regression":
1518
+ loss_fct = MSELoss()
1519
+ if self.num_labels == 1:
1520
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1521
+ else:
1522
+ loss = loss_fct(pooled_logits, labels)
1523
+ elif self.config.problem_type == "single_label_classification":
1524
+ loss_fct = CrossEntropyLoss()
1525
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1526
+ elif self.config.problem_type == "multi_label_classification":
1527
+ loss_fct = BCEWithLogitsLoss()
1528
+ loss = loss_fct(pooled_logits, labels)
1529
+ if not return_dict:
1530
+ output = (pooled_logits,) + model_outputs[1:]
1531
+ return ((loss,) + output) if loss is not None else output
1532
+
1533
+ return SequenceClassifierOutputWithPast(
1534
+ loss=loss,
1535
+ logits=pooled_logits,
1536
+ past_key_values=model_outputs.past_key_values,
1537
+ hidden_states=model_outputs.hidden_states,
1538
+ attentions=model_outputs.attentions,
1539
+ )
1540
+
1541
+
1542
+ @add_start_docstrings(
1543
+ """
1544
+ [`Phi3VModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1545
+ Named-Entity-Recognition (NER) tasks.
1546
+ """,
1547
+ PHI3V_START_DOCSTRING,
1548
+ )
1549
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1550
+ class Phi3VForTokenClassification(Phi3VPreTrainedModel):
1551
+ def __init__(self, config: Phi3VConfig):
1552
+ super().__init__(config)
1553
+ self.num_labels = config.num_labels
1554
+
1555
+ self.model = Phi3VModel(config)
1556
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
1557
+ classifier_dropout = config.classifier_dropout
1558
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1559
+ classifier_dropout = config.hidden_dropout
1560
+ else:
1561
+ classifier_dropout = 0.1
1562
+ self.dropout = nn.Dropout(classifier_dropout)
1563
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1564
+
1565
+ # Initialize weights and apply final processing
1566
+ self.post_init()
1567
+
1568
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1569
+ @add_code_sample_docstrings(
1570
+ checkpoint=_CHECKPOINT_FOR_DOC,
1571
+ output_type=TokenClassifierOutput,
1572
+ config_class=_CONFIG_FOR_DOC,
1573
+ )
1574
+ def forward(
1575
+ self,
1576
+ input_ids: Optional[torch.LongTensor] = None,
1577
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1578
+ attention_mask: Optional[torch.Tensor] = None,
1579
+ inputs_embeds: Optional[torch.Tensor] = None,
1580
+ pixel_values: Optional[torch.FloatTensor] = None,
1581
+ image_sizes: Optional[torch.LongTensor] = None,
1582
+ labels: Optional[torch.Tensor] = None,
1583
+ use_cache: Optional[bool] = None,
1584
+ output_attentions: Optional[bool] = None,
1585
+ output_hidden_states: Optional[bool] = None,
1586
+ return_dict: Optional[bool] = None,
1587
+ **deprecated_arguments,
1588
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1589
+ r"""
1590
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1591
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1592
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1593
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1594
+ """
1595
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1596
+
1597
+ model_outputs = self.model(
1598
+ input_ids,
1599
+ past_key_values=past_key_values,
1600
+ attention_mask=attention_mask,
1601
+ inputs_embeds=inputs_embeds,
1602
+ pixel_values=pixel_values,
1603
+ image_sizes=image_sizes,
1604
+ use_cache=use_cache,
1605
+ output_attentions=output_attentions,
1606
+ output_hidden_states=output_hidden_states,
1607
+ return_dict=return_dict,
1608
+ )
1609
+
1610
+ hidden_states = model_outputs[0]
1611
+ hidden_states = self.dropout(hidden_states)
1612
+ logits = self.classifier(hidden_states)
1613
+
1614
+ loss = None
1615
+ if labels is not None:
1616
+ # move labels to correct device to enable model parallelism
1617
+ labels = labels.to(logits.device)
1618
+ batch_size, seq_length = labels.shape
1619
+ loss_fct = CrossEntropyLoss()
1620
+ loss = loss_fct(
1621
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1622
+ )
1623
+
1624
+ if not return_dict:
1625
+ output = (logits,) + model_outputs[2:]
1626
+ return ((loss,) + output) if loss is not None else output
1627
+
1628
+ return TokenClassifierOutput(
1629
+ loss=loss,
1630
+ logits=logits,
1631
+ hidden_states=model_outputs.hidden_states,
1632
+ attentions=model_outputs.attentions,
1633
+ )
preprocessor_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor",
4
+ "AutoImageProcessor": "image_processing_phi3_v.Phi3VImageProcessor"
5
+ },
6
+ "num_crops": 16,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_processor_type": "Phi3VImageProcessor",
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "processor_class": "Phi3VProcessor",
19
+ "num_img_tokens": 144
20
+ }
processing_phi3_v.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Processor class for Phi3-V.
18
+ """
19
+ import re
20
+ from typing import List, Optional, Union
21
+
22
+ import torch
23
+
24
+ import transformers
25
+ from transformers.feature_extraction_utils import BatchFeature
26
+ from transformers.image_utils import ImageInput
27
+ from transformers.processing_utils import ProcessorMixin
28
+ from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
29
+ from transformers.utils import TensorType
30
+ from .image_processing_phi3_v import Phi3VImageProcessor
31
+ transformers.Phi3VImageProcessor = Phi3VImageProcessor
32
+
33
+ class Phi3VProcessor(ProcessorMixin):
34
+ r"""
35
+ Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
36
+
37
+ [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
38
+ [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
39
+
40
+ Args:
41
+ image_processor ([`Phi3VImageProcessor`], *optional*):
42
+ The image processor is a required input.
43
+ tokenizer ([`LlamaTokenizerFast`], *optional*):
44
+ The tokenizer is a required input.
45
+ """
46
+
47
+ attributes = ["image_processor", "tokenizer"]
48
+ image_processor_class = "Phi3VImageProcessor"
49
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
50
+ special_image_token = "<|image|>"
51
+
52
+ def __init__(self, image_processor, tokenizer):
53
+ self.image_processor = image_processor
54
+ self.tokenizer = tokenizer
55
+ self.num_img_tokens = image_processor.num_img_tokens
56
+ self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
57
+
58
+ def __call__(
59
+ self,
60
+ text: Union[TextInput, List[TextInput]],
61
+ images: ImageInput = None,
62
+ padding: Union[bool, str, PaddingStrategy] = False,
63
+ truncation: Union[bool, str, TruncationStrategy] = None,
64
+ max_length=None,
65
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
66
+ ) -> BatchFeature:
67
+ """
68
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
69
+ and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
70
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
71
+ Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
72
+ of the above two methods for more information.
73
+
74
+ Args:
75
+ text (`str`, `List[str]`, `List[List[str]]`):
76
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
77
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
78
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
79
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
80
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
81
+ tensor. Both channels-first and channels-last formats are supported.
82
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
83
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
84
+ index) among:
85
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
86
+ sequence if provided).
87
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
88
+ acceptable input length for the model if that argument is not provided.
89
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
90
+ lengths).
91
+ max_length (`int`, *optional*):
92
+ Maximum length of the returned list and optionally padding length (see above).
93
+ truncation (`bool`, *optional*):
94
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
95
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
96
+ If set, will return tensors of a particular framework. Acceptable values are:
97
+
98
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
99
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
100
+ - `'np'`: Return NumPy `np.ndarray` objects.
101
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
102
+
103
+ Returns:
104
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
105
+
106
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
107
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
108
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
109
+ `None`).
110
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
111
+ """
112
+ if images is not None:
113
+ image_inputs = self.image_processor(images, return_tensors=return_tensors)
114
+ else:
115
+ image_inputs = {}
116
+ inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
117
+ return inputs
118
+
119
+ def calc_num_image_tokens(self, images: ImageInput):
120
+ """ Calculate the number of image tokens for each image.
121
+ Args:
122
+ images (`ImageInput`):
123
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
124
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
125
+ """
126
+ return self.image_processor.calc_num_image_tokens(images)
127
+
128
+ def calc_num_image_tokens_from_image_size(self, width, height):
129
+ """ Calculate the number of image token for an image with given width and height.
130
+ Args:
131
+ width (`int`):
132
+ Width of the image.
133
+ height (`int`):
134
+ Height of the image.
135
+ """
136
+ return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
137
+
138
+
139
+ @property
140
+ def special_image_token_id(self):
141
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
142
+
143
+ def get_special_image_token_id(self):
144
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
145
+
146
+ def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
147
+
148
+ if not len(images):
149
+ model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
150
+ return BatchFeature(data={**model_inputs})
151
+
152
+ pattern = r"<\|image_\d+\|>"
153
+ prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
154
+
155
+ if 'num_img_tokens' in images:
156
+ num_img_tokens = images['num_img_tokens']
157
+ else:
158
+ assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
159
+ num_crops = images['num_crops']
160
+ num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
161
+
162
+ images, image_sizes = images['pixel_values'], images['image_sizes']
163
+
164
+ # image_tags needs to start from 1 to n
165
+ image_tags = re.findall(pattern, texts)
166
+ # image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
167
+ # image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
168
+ image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
169
+ unique_image_ids = sorted(list(set(image_ids)))
170
+ # image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
171
+ # check the condition
172
+ assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
173
+ # total images must be the same as the number of image tags
174
+ assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
175
+
176
+ image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
177
+
178
+ def insert_separator(X, sep_list):
179
+ if len(X) > len(sep_list):
180
+ sep_list.append([])
181
+ return [ele for sublist in zip(X, sep_list) for ele in sublist]
182
+ input_ids = []
183
+ offset = 0
184
+ for x in insert_separator(prompt_chunks, image_ids_pad):
185
+ input_ids.extend(x[offset:])
186
+
187
+ input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
188
+ attention_mask = (input_ids > -1000000).to(torch.long)
189
+
190
+ return BatchFeature(data={"input_ids": input_ids,
191
+ "attention_mask": attention_mask,
192
+ "pixel_values": images,
193
+ "image_sizes": image_sizes})
194
+
195
+
196
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
197
+ def batch_decode(self, *args, **kwargs):
198
+ """
199
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
200
+ refer to the docstring of this method for more information.
201
+ """
202
+ return self.tokenizer.batch_decode(*args, **kwargs)
203
+
204
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
205
+ def decode(self, *args, **kwargs):
206
+ """
207
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
208
+ the docstring of this method for more information.
209
+ """
210
+ return self.tokenizer.decode(*args, **kwargs)
211
+
212
+ @property
213
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
214
+ def model_input_names(self):
215
+ tokenizer_input_names = self.tokenizer.model_input_names
216
+ image_processor_input_names = self.image_processor.model_input_names
217
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5c58d90e044e2213eb737298e9ea7f0b3129c60a7a5cff2d11e068caa64ab2
3
+ size 4944243099
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd40e3643e4b3399ce995ccc1257ec40638309f04d6746055b01a79f29ad9924
3
+ size 3349229092
special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|system|>",
4
+ "<|end|>",
5
+ "<|user|>",
6
+ "<|end|>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "<|endoftext|>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": true,
26
+ "single_word": false,
27
+ "special": false
28
+ },
29
+ "32000": {
30
+ "content": "<|endoftext|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|assistant|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": true,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32002": {
46
+ "content": "<|placeholder1|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": true,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32003": {
54
+ "content": "<|placeholder2|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": true,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32004": {
62
+ "content": "<|placeholder3|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": true,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "32005": {
70
+ "content": "<|placeholder4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": true,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "32006": {
78
+ "content": "<|system|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "32007": {
86
+ "content": "<|end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "32008": {
94
+ "content": "<|placeholder5|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": true,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "32009": {
102
+ "content": "<|placeholder6|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": true,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "32010": {
110
+ "content": "<|user|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "32011": {
118
+ "content": "<|placeholder7|>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": true,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "32012": {
126
+ "content": "<|placeholder8|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": true,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "32013": {
134
+ "content": "<|placeholder9|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": true,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "32014": {
142
+ "content": "<|placeholder10|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": true,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "32015": {
150
+ "content": "<|placeholder11|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": true,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "32016": {
158
+ "content": "<|placeholder12|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": true,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "32017": {
166
+ "content": "<|placeholder13|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": true,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "32018": {
174
+ "content": "<|placeholder14|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": true,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "32019": {
182
+ "content": "<|placeholder15|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": true,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "32020": {
190
+ "content": "<|placeholder16|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": true,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "32021": {
198
+ "content": "<|placeholder17|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": true,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "32022": {
206
+ "content": "<|placeholder18|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": true,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "32023": {
214
+ "content": "<|placeholder19|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": true,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "32024": {
222
+ "content": "<|placeholder20|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": true,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "32025": {
230
+ "content": "<|placeholder21|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": true,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "32026": {
238
+ "content": "<|placeholder22|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": true,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "32027": {
246
+ "content": "<|placeholder23|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": true,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "32028": {
254
+ "content": "<|placeholder24|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": true,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "32029": {
262
+ "content": "<|placeholder25|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": true,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "32030": {
270
+ "content": "<|placeholder26|>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": true,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "32031": {
278
+ "content": "<|placeholder27|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": true,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "32032": {
286
+ "content": "<|placeholder28|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": true,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "32033": {
294
+ "content": "<|placeholder29|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": true,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "32034": {
302
+ "content": "<|placeholder30|>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": true,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "32035": {
310
+ "content": "<|placeholder31|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": true,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "32036": {
318
+ "content": "<|placeholder32|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": true,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "32037": {
326
+ "content": "<|placeholder33|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": true,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "32038": {
334
+ "content": "<|placeholder34|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": true,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "32039": {
342
+ "content": "<|placeholder35|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": true,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "32040": {
350
+ "content": "<|placeholder36|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": true,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "32041": {
358
+ "content": "<|placeholder37|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": true,
362
+ "single_word": false,
363
+ "special": true
364
+ },
365
+ "32042": {
366
+ "content": "<|placeholder38|>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": true,
370
+ "single_word": false,
371
+ "special": true
372
+ },
373
+ "32043": {
374
+ "content": "<|placeholder39|>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": true,
378
+ "single_word": false,
379
+ "special": true
380
+ },
381
+ "32044": {
382
+ "content": "<|image|>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": true,
386
+ "single_word": false,
387
+ "special": true
388
+ }
389
+ },
390
+ "additional_special_tokens": [
391
+ "<|system|>",
392
+ "<|end|>",
393
+ "<|user|>",
394
+ "<|end|>"
395
+ ],
396
+ "bos_token": "<s>",
397
+ "chat_template": "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}",
398
+ "clean_up_tokenization_spaces": false,
399
+ "eos_token": "<|endoftext|>",
400
+ "legacy": false,
401
+ "model_max_length": 131072,
402
+ "pad_token": "<|endoftext|>",
403
+ "padding_side": "right",
404
+ "sp_model_kwargs": {},
405
+ "tokenizer_class": "LlamaTokenizer",
406
+ "unk_token": "<unk>",
407
+ "use_default_system_prompt": false
408
+ }