Mxode commited on
Commit
82e8e0d
·
verified ·
1 Parent(s): 6673691

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -10,10 +10,13 @@ library_name: transformers
10
  ---
11
  # **NanoTranslator-L**
12
 
 
 
13
  ## Introduction
14
 
15
- 这是 NanoTranslator Large 型号,目前仅支持**英译中**。仓库中同时提供了 ONNX 版本的模型。
16
 
 
17
 
18
 
19
  | Size | Params. | V. | H. | I. | L. | Att. H. | KV H. | Tie Emb. |
@@ -35,7 +38,7 @@ library_name: transformers
35
 
36
  ## How to use
37
 
38
- Prompt 格式如下:
39
 
40
  ```
41
  <|im_start|> {English Text} <|endoftext|>
@@ -84,7 +87,7 @@ print(response)
84
 
85
  It has been measured that reasoning with ONNX models will be **2-10 times faster** than reasoning directly with transformers models.
86
 
87
- You should switch to onnx branch manually and download to local.
88
 
89
  reference docs:
90
 
@@ -94,8 +97,6 @@ reference docs:
94
  **Using ORTModelForCausalLM**
95
 
96
  ```python
97
- # onnx branch: https://huggingface.co/Mxode/NanoTranslator-M/tree/onnx
98
-
99
  from optimum.onnxruntime import ORTModelForCausalLM
100
  from transformers import AutoTokenizer
101
 
@@ -122,4 +123,4 @@ text = "I love to watch my favorite TV series."
122
 
123
  response = pipe(text, max_new_tokens=64, do_sample=False)
124
  response
125
- ```
 
10
  ---
11
  # **NanoTranslator-L**
12
 
13
+ English | [简体中文](README_zh-CN.md)
14
+
15
  ## Introduction
16
 
17
+ This is the Large model of the NanoTranslator, currently supported only in **English to Chinese**.
18
 
19
+ The ONNX version of the model is also available in the repository.
20
 
21
 
22
  | Size | Params. | V. | H. | I. | L. | Att. H. | KV H. | Tie Emb. |
 
38
 
39
  ## How to use
40
 
41
+ Prompt format as follows:
42
 
43
  ```
44
  <|im_start|> {English Text} <|endoftext|>
 
87
 
88
  It has been measured that reasoning with ONNX models will be **2-10 times faster** than reasoning directly with transformers models.
89
 
90
+ You should switch to [onnx branch](https://huggingface.co/Mxode/NanoTranslator-L/tree/onnx) manually and download to local.
91
 
92
  reference docs:
93
 
 
97
  **Using ORTModelForCausalLM**
98
 
99
  ```python
 
 
100
  from optimum.onnxruntime import ORTModelForCausalLM
101
  from transformers import AutoTokenizer
102
 
 
123
 
124
  response = pipe(text, max_new_tokens=64, do_sample=False)
125
  response
126
+ ```