Mxode commited on
Commit
ccfb337
·
verified ·
1 Parent(s): 9d48748

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -13
README.md CHANGED
@@ -8,31 +8,34 @@ language:
8
  pipeline_tag: translation
9
  library_name: transformers
10
  ---
11
- # **NanoTranslator-S**
12
 
13
  English | [简体中文](README_zh-CN.md)
14
 
15
  ## Introduction
16
 
17
- This is the Small model of the NanoTranslator, currently supported only in **English to Chinese**.
18
 
19
  The ONNX version of the model is also available in the repository.
20
 
21
 
22
- | Size | Params. | V. | H. | I. | L. | Att. H. | KV H. | Tie Emb. |
23
- | :--: | :-----: | :--: | :--: | :--: | :--: | :-----: | :---: | :------: |
24
- | XL | 50 M | 8000 | 320 | 1792 | 24 | 16 | 4 | True |
25
- | L | 22 M | 8000 | 256 | 1408 | 16 | 16 | 4 | True |
26
- | M | 9 M | 4000 | 168 | 896 | 16 | 12 | 4 | True |
27
- | S | 2 M | 2000 | 96 | 512 | 12 | 12 | 4 | True |
 
 
28
 
 
29
  - **V.** - vocab size
30
  - **H.** - hidden size
31
  - **I.** - intermediate size
32
  - **L.** - num layers
33
- - **Att. H.** - num attention heads
34
- - **KV H.** - num kv heads
35
- - **Tie Emb.** - tie word embeddings
36
 
37
 
38
 
@@ -50,7 +53,7 @@ Prompt format as follows:
50
  import torch
51
  from transformers import AutoTokenizer, AutoModelForCausalLM
52
 
53
- model_path = 'Mxode/NanoTranslator-S'
54
 
55
  tokenizer = AutoTokenizer.from_pretrained(model_path)
56
  model = AutoModelForCausalLM.from_pretrained(model_path)
@@ -87,7 +90,7 @@ print(response)
87
 
88
  It has been measured that reasoning with ONNX models will be **2-10 times faster** than reasoning directly with transformers models.
89
 
90
- You should switch to [onnx branch](https://huggingface.co/Mxode/NanoTranslator-S/tree/onnx) manually and download to local.
91
 
92
  reference docs:
93
 
 
8
  pipeline_tag: translation
9
  library_name: transformers
10
  ---
11
+ # **NanoTranslator-XS**
12
 
13
  English | [简体中文](README_zh-CN.md)
14
 
15
  ## Introduction
16
 
17
+ This is the **small** model of the NanoTranslator, currently supported only in **English to Chinese**.
18
 
19
  The ONNX version of the model is also available in the repository.
20
 
21
 
22
+ | Size | P. | Arch. | Act. | V. | H. | I. | L. | A.H. | K.H. | Tie |
23
+ | :--: | :-----: | :--: | :--: | :--: | :-----: | :---: | :------: | ---- | ---- | :--: |
24
+ | XL | 100 | LLaMA | SwiGLU | 16000 | 768 | 4096 | 8 | 24 | 8 | True |
25
+ | L | 78 | LLaMA | GeGLU | 16000 | 768 | 4096 | 6 | 24 | 8 | True |
26
+ | M2 | 22 | Qwen2 | GeGLU | 4000 | 432 | 2304 | 6 | 24 | 8 | True |
27
+ | M | 22 | LLaMA | SwiGLU | 8000 | 256 | 1408 | 16 | 16 | 4 | True |
28
+ | S | 9 | LLaMA | SwiGLU | 4000 | 168 | 896 | 16 | 12 | 4 | True |
29
+ | XS | 2 | LLaMA | SwiGLU | 2000 | 96 | 512 | 12 | 12 | 4 | True |
30
 
31
+ - **P.** - Parameters (in million)
32
  - **V.** - vocab size
33
  - **H.** - hidden size
34
  - **I.** - intermediate size
35
  - **L.** - num layers
36
+ - **A.H.** - num attention heads
37
+ - **K.H.** - num kv heads
38
+ - **Tie** - tie word embeddings
39
 
40
 
41
 
 
53
  import torch
54
  from transformers import AutoTokenizer, AutoModelForCausalLM
55
 
56
+ model_path = 'Mxode/NanoTranslator-XS'
57
 
58
  tokenizer = AutoTokenizer.from_pretrained(model_path)
59
  model = AutoModelForCausalLM.from_pretrained(model_path)
 
90
 
91
  It has been measured that reasoning with ONNX models will be **2-10 times faster** than reasoning directly with transformers models.
92
 
93
+ You should switch to [onnx branch](https://huggingface.co/Mxode/NanoTranslator-XS/tree/onnx) manually and download to local.
94
 
95
  reference docs:
96