File size: 1,961 Bytes
57b8b3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: Salesforce/codegen-350M-multi
library_name: peft
license: bsd-3-clause
tags:
- generated_from_trainer
model-index:
- name: arduino-fine_tuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# arduino-fine_tuned

This model is a fine-tuned version of [Salesforce/codegen-350M-multi](https://huggingface.co/Salesforce/codegen-350M-multi) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2232

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5517        | 0.9964 | 140  | 0.3323          |
| 0.3111        | 2.0    | 281  | 0.2730          |
| 0.2641        | 2.9964 | 421  | 0.2525          |
| 0.2342        | 4.0    | 562  | 0.2399          |
| 0.2181        | 4.9964 | 702  | 0.2317          |
| 0.1998        | 6.0    | 843  | 0.2298          |
| 0.1897        | 6.9964 | 983  | 0.2242          |
| 0.1766        | 8.0    | 1124 | 0.2231          |
| 0.1694        | 8.9964 | 1264 | 0.2222          |
| 0.1606        | 9.9644 | 1400 | 0.2232          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1