File size: 2,962 Bytes
8a39efb ae6ded5 8a39efb 5016cfc 10ff8a7 5016cfc 4266da4 5016cfc 8a39efb 43ff9af ae6ded5 8a39efb 43ff9af 8a39efb 43ff9af 8a39efb 9de1f53 08e964d 959ba9e 08e964d 959ba9e 9de1f53 959ba9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: gemma
base_model: google/paligemma-3b-pt-224
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: paligemma_age
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FaceScanPaliGemma_Age
``` python
from PIL import Image
import torch
from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer
model = PaliGemmaForConditionalGeneration.from_pretrained('NYUAD-ComNets/FaceScanPaliGemma_Age',torch_dtype=torch.bfloat16)
input_text = "what is the age group of the person in the image?"
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
input_image = Image.open('image_path')
inputs = processor(text=input_text, images=input_image, padding="longest", do_convert_rgb=True, return_tensors="pt").to(device)
inputs = inputs.to(dtype=model.dtype)
with torch.no_grad():
output = model.generate(**inputs, max_length=500)
result=processor.decode(output[0], skip_special_tokens=True)[len(input_text):].strip()
```
## Model description
This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the FairFace dataset.
The model aims to classify the age of face image or image with one person into five groups such as from 0 to 9, from 10 to 19, from 20 to 39, from 40 ro 59, More than 60
## Model Performance
Accuracy: 80 %, F1 score: 74 %
## Intended uses & limitations
This model is used for research purposes
## Training and evaluation data
FairFace dataset was used for training and validating the model
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
# BibTeX entry and citation info
```
@article{aldahoul2024exploring,
title={Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age},
author={AlDahoul, Nouar and Tan, Myles Joshua Toledo and Kasireddy, Harishwar Reddy and Zaki, Yasir},
journal={arXiv preprint arXiv:2410.24148},
year={2024}
}
@misc{ComNets,
url={https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Age](https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Age)},
title={FaceScanPaliGemma_Age},
author={Nouar AlDahoul, Yasir Zaki}
}
|