{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c12d38e8160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c12d38e81f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c12d38e8280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c12d38e8310>", "_build": "<function ActorCriticPolicy._build at 0x7c12d38e83a0>", "forward": "<function ActorCriticPolicy.forward at 0x7c12d38e8430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c12d38e84c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c12d38e8550>", "_predict": "<function ActorCriticPolicy._predict at 0x7c12d38e85e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c12d38e8670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c12d38e8700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c12d38e8790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c12d38e4940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700522833779789675, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALZnoT4Rl2w/cr69PokTbL4xMVE+mIEjvQAAAAAAAAAAZveyvSlYaroF2lq79yg0uEPPJbrJGpw5AACAPwAAgD9GZSK+exmFO9Kh6D0rpSe725yOvgI2CD4AAIA/AACAPwBdFj0U1JC6HQAlNGwzVjCLh706gp+jswAAgD8AAIA/pomYvZbtlz4RoIA85mo7vu56FbuyYWE9AAAAAAAAAADmBV29Hy6IPoaffLyn8SC+XE2vvA3LFr0AAAAAAAAAAGYQ/D1Ybpg+JZsqvj1sg761zjK9ZSd9PAAAAAAAAAAAmiKAvAjKsz9UYEm/9BsdvgFBhzyOtxc+AAAAAAAAAACatBW+qv+5PoimZD7GpWy+PNQVPOuwrD0AAAAAAAAAALqpXb5bg9y8gzyJOmpnDDmFukI+3jmzuQAAgD8AAIA/dcGWvizpOz7Yl2M+JdwCvkoCJr00Cj88AAAAAAAAAAAzAxy8SF2Wuvl/vzcpAL0yaIIJO5VE3bYAAIA/AACAP4ADjD0RM9U+lHEdvpdqML7dBRg8qioIvQAAAAAAAAAA5dGXvmRMZT9uhWe+QgKevuBdV74dPc09AAAAAAAAAAAQWLe+O2BjPyCagr7BA8u+AT9/vrxRDTwAAAAAAAAAAM0ouL1cuzi6S2UXuPEdsbOS1nG54hovNwAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDep79hqj+MAWyUTcYBjAF0lEdAl0y0ZiuuBHV9lChoBkdAcOy2eQMhHWgHTXMDaAhHQJdOqQGOdXl1fZQoaAZHQGv1bPppvgpoB02iAmgIR0CXUg+EAYHgdX2UKGgGR0A5H212JSBLaAdL4GgIR0CXU56cRUWEdX2UKGgGR0BtlKrmyPdVaAdNQwJoCEdAl1cGFev6j3V9lChoBkdAbhHb/wRXfmgHTaABaAhHQJdYv+T/yXl1fZQoaAZHQHG2KDsdDIBoB01tAmgIR0CXWNJMQEpzdX2UKGgGR0BO5lGoaUA1aAdL3GgIR0CXW3XRPXTWdX2UKGgGR0Bl9TEYO2AoaAdN6ANoCEdAl1uZGjKxLXV9lChoBkdAbEepIczZYmgHTW0BaAhHQJdebgqEvkB1fZQoaAZHQHFyJWJaaCtoB031AWgIR0CXXx3CsOoYdX2UKGgGR0BmeOcz67/XaAdN6ANoCEdAl2Ue8PFvRHV9lChoBkdAbeuEOiFj/mgHTUsCaAhHQJdmN4+r2g51fZQoaAZHQHIU8ZxaPjpoB01rAWgIR0CXZ2pkPMB7dX2UKGgGR0BBPgwXZXdTaAdNDQFoCEdAl2ykFwDNhXV9lChoBkdAcEVqZML4OGgHTaMCaAhHQJdt92ovSMN1fZQoaAZHQCyL6ab4Ju5oB00xAWgIR0CXbgXlKbrkdX2UKGgGR0BsHMVeruIAaAdNsAFoCEdAl3BYAXEZSHV9lChoBkdAcJBFuNxVAGgHTakCaAhHQJdxmI/JNj91fZQoaAZHQGzOitihFmZoB032AWgIR0CXctUoKD02dX2UKGgGR0BxvTWH1vl2aAdNLQJoCEdAl3MyQ9zOo3V9lChoBkdAaxAYbbUPQWgHTf0BaAhHQJd2wiLVFx51fZQoaAZHQHC5wnhKlHloB00xAWgIR0CXd+YGdI5HdX2UKGgGR0Bu5H3SKFZgaAdNIQJoCEdAl3hzN6gM+nV9lChoBkdAbWhR7Z39rGgHTWUBaAhHQJd5L6j32251fZQoaAZHQGQYD+aScLBoB03oA2gIR0CXeZcSoOx0dX2UKGgGR0BwFGjwhGH6aAdNyQFoCEdAl3yHnZCfH3V9lChoBkdAYYXIbOu7pWgHTegDaAhHQJd9abYsd1d1fZQoaAZHQGrIk8zQ/otoB01fAWgIR0CXfzk8RtgsdX2UKGgGR0Bx4z82rGR3aAdNLANoCEdAl4KdlmOENHV9lChoBkdAMgzMRpUPx2gHS9loCEdAl4NB0p3HJnV9lChoBkdAZ6ua2F36h2gHTegDaAhHQJeaKO+7Dl51fZQoaAZHQHGEK1kUbkxoB00PAmgIR0CXnvfDDTBqdX2UKGgGR0BwlONfgJkYaAdNvQFoCEdAl5+LnDBMz3V9lChoBkdAbpDPQfIS12gHTdYBaAhHQJehQmw7kn11fZQoaAZHQHGaPzasZHdoB02lAWgIR0CXoiE+xGDudX2UKGgGR0BwAYRPGhmHaAdNHwJoCEdAl6JTEehf0HV9lChoBkdAcNwrtE5QxmgHTVEBaAhHQJekXdWQwK11fZQoaAZHQHG0StvGZNRoB03QAWgIR0CXpWBwdbPhdX2UKGgGR0Bulxf+jua4aAdNgQFoCEdAl6e8dxQzlHV9lChoBkdAbpm81XNkfGgHTfwCaAhHQJep4Vj7Q9l1fZQoaAZHQHCEBSHdoFpoB02VAWgIR0CXqp6eGwiadX2UKGgGR0Bw6fa4+bExaAdNMwFoCEdAl6sq5LAYYXV9lChoBkdAcJ8smv4dqGgHTW4BaAhHQJesFjawljV1fZQoaAZHQGvQbbL2YfJoB01cAmgIR0CXrHdrftQbdX2UKGgGR0Btqht+CsfaaAdNWwFoCEdAl6+uSfUWmHV9lChoBkdAaxHqk/KQrGgHTW0DaAhHQJey7solUqB1fZQoaAZHQG4ejwhGH59oB03vAmgIR0CXs9sNlRP5dX2UKGgGR0BwD3nzQNTcaAdNnwFoCEdAl7W5B1LamHV9lChoBkdAOsQztTkyUWgHS+poCEdAl7cvU8V58nV9lChoBkdAcXR4tpVS42gHTZoBaAhHQJe4XIo3Jgd1fZQoaAZHQG8nSn+AEuBoB00EAmgIR0CXuX/WUbDNdX2UKGgGR0Bw/KZ0CA+ZaAdNXAFoCEdAl7nSYG+sYHV9lChoBkdAcD0WO6unuWgHTXMCaAhHQJe9SDkELYx1fZQoaAZHQHCIRWYF7ldoB02rAWgIR0CXvmEDhcZ+dX2UKGgGR0BvUosEq2BraAdNyAFoCEdAl8Be7Dl5nnV9lChoBkdAbz+6Lfk3j2gHTdcBaAhHQJfCDRrrPdF1fZQoaAZHQCbw2qDK5kNoB00RAWgIR0CXxymG/N7jdX2UKGgGR0BwjNQDV6NVaAdNswFoCEdAl8gz/2kBS3V9lChoBkdANSYbXHzYmWgHS9RoCEdAl8lyPMjeK3V9lChoBkdAcAbQGwA2h2gHTVwBaAhHQJfLzypaRp11fZQoaAZHQGbsyKNyYHBoB03oA2gIR0CXzFaTOgQIdX2UKGgGR0BtsOfh/Aj6aAdNxQFoCEdAl81k/B3zMHV9lChoBkdAb/McjJMg2mgHTUoBaAhHQJflNy8zyjJ1fZQoaAZHQHDO05QxesxoB01tA2gIR0CX5bgGbCrMdX2UKGgGR0AiGw3YL9deaAdL8mgIR0CX5bM85jpcdX2UKGgGR0BxElGvwEyMaAdNwAFoCEdAl+XPIXCTEHV9lChoBkdAcdi2Bas6rGgHTaUDaAhHQJfmJGUfPop1fZQoaAZHQGt02uPmxMZoB000AmgIR0CX5oBv73wkdX2UKGgGR0Bu5IqAjIJaaAdNmQJoCEdAl+bue8PFvXV9lChoBkdAcKf4agmJFmgHTTYBaAhHQJfsScTakAR1fZQoaAZHQFupCT2WY4RoB03oA2gIR0CX7JkRzzVddX2UKGgGR0Btc2w/xDsuaAdNPQFoCEdAl/BLZOBUaXV9lChoBkdAcE5GCI1tO2gHTa4BaAhHQJf0/z4DcM51fZQoaAZHQG2gOIInjQ1oB02TAmgIR0CX9lQF9roGdX2UKGgGR0Bw69VBD5TIaAdNhQFoCEdAl/bZZjhDPXV9lChoBkdAcApU1AJLNGgHTXYBaAhHQJf3yYoiLVF1fZQoaAZHQG24MW43FUBoB02pAWgIR0CX9/MsYl6adX2UKGgGR0BrGPZ/Tb35aAdNpwFoCEdAl/jj7di2D3V9lChoBkdAbAubSZ0CBGgHTSACaAhHQJf6p6cAiml1fZQoaAZHQHBBXHim2stoB03qAWgIR0CX+x+yJKradX2UKGgGR0BbNA+hXbM5aAdN6ANoCEdAl/ypOzposnV9lChoBkdAcJLIZZSvT2gHTR0CaAhHQJf9GIyj59F1fZQoaAZHQHII97jT8YRoB00OAmgIR0CX/VIWxhUjdX2UKGgGR0BwN2P6sQumaAdNkwJoCEdAl/1sEmplz3V9lChoBkdAcMnsTWXkYGgHTXoBaAhHQJf+AMTewcJ1fZQoaAZHQHCAkrK/201oB00xAWgIR0CX/hYdhiLEdX2UKGgGR0BuPj/bTMJQaAdN3QJoCEdAl/6YuK4x13V9lChoBkdAcDCe+VTrFGgHTdQBaAhHQJgAdRzijtZ1fZQoaAZHQG1DAeJYT0xoB01bAWgIR0CYBDT987ZGdX2UKGgGR0BrFOstCiRGaAdNcQFoCEdAmAYO40/GEXV9lChoBkdAcfHq2SdOI2gHTVoBaAhHQJgGJxn3+Mt1fZQoaAZHQHGOT8cdYGNoB02WAWgIR0CYCGU9ZA6ddX2UKGgGR0BwQ6Btk4FSaAdNVQFoCEdAmAhgfZElV3V9lChoBkdAcAnVurIYFmgHTdEBaAhHQJgIhSBK+SN1fZQoaAZHQHDHNcv/R3NoB01NAWgIR0CYCJEBKcurdX2UKGgGR0BqrHBacI7eaAdNaAFoCEdAmA7bEDQqqnV9lChoBkdAbhEtVaOghGgHTYEBaAhHQJgPG/N7jT91fZQoaAZHQGt+3rD63y9oB00vAmgIR0CYD0/FzdULdX2UKGgGR0BwKuAI6bONaAdNlQFoCEdAmBKbY02tMnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |