pere commited on
Commit
06a2e17
·
1 Parent(s): 9457a88

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -62
README.md CHANGED
@@ -32,68 +32,6 @@ NB-SBERT is a [SentenceTransformers](https://www.SBERT.net) model trained on a [
32
 
33
  The model maps sentences & paragraphs to a 768 dimensional dense vector space. This vector can be used for tasks like clustering and semantic search. Below we give some examples on how to use the model. The easiest way is to simply measure the cosine distance between two sentences. Sentences that are close to each other in meaning, will have a small cosine distance and a similarity close to 1. The model is trained in such a way that similar sentences in different languages should also be close to each other. Ideally, an English-Norwegian sentence pair should have high similarity.
34
 
35
- ## Keyword Extraction
36
- The model can be used for extracting keywords from text. The basic technique is to find the words that are most similar to the document. There are various frameworks for doing this. An easy way is to use [KeyBERT](https://github.com/MaartenGr/KeyBERT). This example shows how this can be done.
37
-
38
- ```bash
39
- pip install keybert
40
- ```
41
-
42
- ```python
43
- from keybert import KeyBERT
44
- from sentence_transformers import SentenceTransformer
45
- sentence_model = SentenceTransformer("NbAiLab/nb-sbert")
46
- kw_model = KeyBERT(model=sentence_model)
47
-
48
- doc = """
49
- De første nasjonale bibliotek har sin opprinnelse i kongelige samlinger eller en annen framstående myndighet eller statsoverhode.
50
- Et av de første planene for et nasjonalbibliotek i England ble fremmet av den walisiske matematikeren og mystikeren John Dee som
51
- i 1556 presenterte en visjonær plan om et nasjonalt bibliotek for gamle bøker, manuskripter og opptegnelser for dronning Maria I
52
- av England. Hans forslag ble ikke tatt til følge.
53
- """
54
- kw_model.extract_keywords(doc, stop_words=None)
55
-
56
- # [('nasjonalbibliotek', 0.5242), ('bibliotek', 0.4342), ('samlinger', 0.3334), ('statsoverhode', 0.33), ('manuskripter', 0.3061)]
57
- ```
58
-
59
- The [KeyBERT homepage](https://github.com/MaartenGr/KeyBERT) provides other several interesting examples: combining KeyBERT with stop words, extracting longer phrases, or directly producing highlighted text.
60
-
61
- ## Topic Modeling
62
- To analyse a group of documents and determine the topics, has a lot of use cases. [BERTopic](https://github.com/MaartenGr/BERTopic) combines the power of sentence transformers with c-TF-IDF to create clusters for easily interpretable topics.
63
-
64
- It would take too much time to explain topic modeling here. Instead we recommend that you take a look at the link above, as well as the [documentation](https://maartengr.github.io/BERTopic/index.html). The main adaptation you would need to do to use the Norwegian nb-sbert, is to add the following:
65
-
66
- ```python
67
- topic_model = BERTopic(embedding_model='NbAiLab/nb-sbert').fit(docs)
68
- ```
69
-
70
- ## Similarity Search
71
- Another common use case for a SentenceTransformers model is to find relevant documents or passages of documents given a certain query text. In this scenario, it is pretty common to have a vector database that stores the embedding vectors for all our documents. Then, at runtime, an embedding for the query text is generated and compared efficiently against the vector database.
72
-
73
- While production vector databases exist, a quick way to experiment with them is by using [`autofaiss`](https://github.com/criteo/autofaiss):
74
-
75
- ```bash
76
- pip install autofaiss sentence-transformers
77
- ```
78
-
79
- ```python
80
- from autofaiss import build_index
81
- import numpy as np
82
-
83
- from sentence_transformers import SentenceTransformer, util
84
- sentences = ["This is a Norwegian boy", "Dette er en norsk gutt", "A red house"]
85
-
86
- model = SentenceTransformer('NbAiLab/nb-sbert')
87
- embeddings = model.encode(sentences)
88
- index, index_infos = build_index(embeddings, save_on_disk=False)
89
-
90
- # Search for the closest matches
91
- query = model.encode(["A young boy"])
92
- _, index_matches = index.search(query, 1)
93
- print(index_matches)
94
- ```
95
-
96
-
97
  ## Embeddings and Sentence Similarity (Sentence-Transformers)
98
 
99
  As seen above, using the library [sentence-transformers](https://www.SBERT.net) makes the use of these models quite convenient:
@@ -168,6 +106,72 @@ print(scipy_cosine_scores)
168
  # This should give 0.8250 in the example above.
169
 
170
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
 
173
  # Evaluation and Parameters
 
32
 
33
  The model maps sentences & paragraphs to a 768 dimensional dense vector space. This vector can be used for tasks like clustering and semantic search. Below we give some examples on how to use the model. The easiest way is to simply measure the cosine distance between two sentences. Sentences that are close to each other in meaning, will have a small cosine distance and a similarity close to 1. The model is trained in such a way that similar sentences in different languages should also be close to each other. Ideally, an English-Norwegian sentence pair should have high similarity.
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ## Embeddings and Sentence Similarity (Sentence-Transformers)
36
 
37
  As seen above, using the library [sentence-transformers](https://www.SBERT.net) makes the use of these models quite convenient:
 
106
  # This should give 0.8250 in the example above.
107
 
108
  ```
109
+ ## SetFit - Few Shot Classification
110
+ [SetFit](https://github.com/huggingface/setfit) is a method for using sentence-transformers to solve one of major problem that all NLP researchers are facing: Too few labeled training examples. The 'nb-sbert' can be plugged directly into the SetFit library. Please see [this tutorial](https://huggingface.co/blog/setfit) for how to use this technique.
111
+
112
+
113
+ ## Keyword Extraction
114
+ The model can be used for extracting keywords from text. The basic technique is to find the words that are most similar to the document. There are various frameworks for doing this. An easy way is to use [KeyBERT](https://github.com/MaartenGr/KeyBERT). This example shows how this can be done.
115
+
116
+ ```bash
117
+ pip install keybert
118
+ ```
119
+
120
+ ```python
121
+ from keybert import KeyBERT
122
+ from sentence_transformers import SentenceTransformer
123
+ sentence_model = SentenceTransformer("NbAiLab/nb-sbert")
124
+ kw_model = KeyBERT(model=sentence_model)
125
+
126
+ doc = """
127
+ De første nasjonale bibliotek har sin opprinnelse i kongelige samlinger eller en annen framstående myndighet eller statsoverhode.
128
+ Et av de første planene for et nasjonalbibliotek i England ble fremmet av den walisiske matematikeren og mystikeren John Dee som
129
+ i 1556 presenterte en visjonær plan om et nasjonalt bibliotek for gamle bøker, manuskripter og opptegnelser for dronning Maria I
130
+ av England. Hans forslag ble ikke tatt til følge.
131
+ """
132
+ kw_model.extract_keywords(doc, stop_words=None)
133
+
134
+ # [('nasjonalbibliotek', 0.5242), ('bibliotek', 0.4342), ('samlinger', 0.3334), ('statsoverhode', 0.33), ('manuskripter', 0.3061)]
135
+ ```
136
+
137
+ The [KeyBERT homepage](https://github.com/MaartenGr/KeyBERT) provides other several interesting examples: combining KeyBERT with stop words, extracting longer phrases, or directly producing highlighted text.
138
+
139
+ ## Topic Modeling
140
+ To analyse a group of documents and determine the topics, has a lot of use cases. [BERTopic](https://github.com/MaartenGr/BERTopic) combines the power of sentence transformers with c-TF-IDF to create clusters for easily interpretable topics.
141
+
142
+ It would take too much time to explain topic modeling here. Instead we recommend that you take a look at the link above, as well as the [documentation](https://maartengr.github.io/BERTopic/index.html). The main adaptation you would need to do to use the Norwegian nb-sbert, is to add the following:
143
+
144
+ ```python
145
+ topic_model = BERTopic(embedding_model='NbAiLab/nb-sbert').fit(docs)
146
+ ```
147
+
148
+ ## Similarity Search
149
+ Another common use case for a SentenceTransformers model is to find relevant documents or passages of documents given a certain query text. In this scenario, it is pretty common to have a vector database that stores the embedding vectors for all our documents. Then, at runtime, an embedding for the query text is generated and compared efficiently against the vector database.
150
+
151
+ While production vector databases exist, a quick way to experiment with them is by using [`autofaiss`](https://github.com/criteo/autofaiss):
152
+
153
+ ```bash
154
+ pip install autofaiss sentence-transformers
155
+ ```
156
+
157
+ ```python
158
+ from autofaiss import build_index
159
+ import numpy as np
160
+
161
+ from sentence_transformers import SentenceTransformer, util
162
+ sentences = ["This is a Norwegian boy", "Dette er en norsk gutt", "A red house"]
163
+
164
+ model = SentenceTransformer('NbAiLab/nb-sbert')
165
+ embeddings = model.encode(sentences)
166
+ index, index_infos = build_index(embeddings, save_on_disk=False)
167
+
168
+ # Search for the closest matches
169
+ query = model.encode(["A young boy"])
170
+ _, index_matches = index.search(query, 1)
171
+ print(index_matches)
172
+ ```
173
+
174
+
175
 
176
 
177
  # Evaluation and Parameters