update model card README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,105 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: wav2vec2-xls-r-300m-npsc-bokmaal
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# wav2vec2-xls-r-300m-npsc-bokmaal
|
13 |
+
|
14 |
+
This model was trained from scratch on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.1663
|
17 |
+
- Wer: 0.0932
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 16
|
38 |
+
- eval_batch_size: 16
|
39 |
+
- seed: 42
|
40 |
+
- gradient_accumulation_steps: 2
|
41 |
+
- total_train_batch_size: 32
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 500
|
45 |
+
- num_epochs: 15.0
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
52 |
+
| 0.0969 | 0.32 | 500 | 0.1773 | 0.1054 |
|
53 |
+
| 0.0929 | 0.64 | 1000 | 0.1672 | 0.1061 |
|
54 |
+
| 0.1018 | 0.97 | 1500 | 0.1770 | 0.1067 |
|
55 |
+
| 0.0871 | 1.29 | 2000 | 0.1832 | 0.1087 |
|
56 |
+
| 0.0908 | 1.61 | 2500 | 0.1830 | 0.1101 |
|
57 |
+
| 0.0975 | 1.93 | 3000 | 0.1848 | 0.1100 |
|
58 |
+
| 0.0936 | 2.26 | 3500 | 0.1853 | 0.1113 |
|
59 |
+
| 0.1025 | 2.58 | 4000 | 0.1958 | 0.1149 |
|
60 |
+
| 0.0989 | 2.9 | 4500 | 0.1776 | 0.1123 |
|
61 |
+
| 0.0946 | 3.22 | 5000 | 0.1825 | 0.1097 |
|
62 |
+
| 0.0859 | 3.55 | 5500 | 0.1864 | 0.1072 |
|
63 |
+
| 0.0867 | 3.87 | 6000 | 0.1886 | 0.1081 |
|
64 |
+
| 0.0783 | 4.19 | 6500 | 0.1883 | 0.1063 |
|
65 |
+
| 0.0804 | 4.51 | 7000 | 0.1831 | 0.1063 |
|
66 |
+
| 0.0797 | 4.84 | 7500 | 0.1884 | 0.1058 |
|
67 |
+
| 0.0705 | 5.16 | 8000 | 0.1802 | 0.1057 |
|
68 |
+
| 0.0795 | 5.48 | 8500 | 0.1854 | 0.1038 |
|
69 |
+
| 0.0711 | 5.8 | 9000 | 0.1766 | 0.1032 |
|
70 |
+
| 0.0973 | 6.13 | 9500 | 0.1663 | 0.1014 |
|
71 |
+
| 0.087 | 6.45 | 10000 | 0.1664 | 0.1014 |
|
72 |
+
| 0.0962 | 6.77 | 10500 | 0.1631 | 0.1009 |
|
73 |
+
| 0.0857 | 7.09 | 11000 | 0.1659 | 0.1002 |
|
74 |
+
| 0.0882 | 7.41 | 11500 | 0.1668 | 0.1007 |
|
75 |
+
| 0.0784 | 7.74 | 12000 | 0.1688 | 0.0996 |
|
76 |
+
| 0.0838 | 8.06 | 12500 | 0.1675 | 0.0984 |
|
77 |
+
| 0.0863 | 8.38 | 13000 | 0.1639 | 0.0979 |
|
78 |
+
| 0.0763 | 8.7 | 13500 | 0.1638 | 0.0980 |
|
79 |
+
| 0.0822 | 9.03 | 14000 | 0.1709 | 0.0972 |
|
80 |
+
| 0.0769 | 9.35 | 14500 | 0.1700 | 0.0965 |
|
81 |
+
| 0.0838 | 9.67 | 15000 | 0.1703 | 0.0974 |
|
82 |
+
| 0.0799 | 9.99 | 15500 | 0.1667 | 0.0957 |
|
83 |
+
| 0.0712 | 10.32 | 16000 | 0.1754 | 0.0960 |
|
84 |
+
| 0.0737 | 10.64 | 16500 | 0.1725 | 0.0968 |
|
85 |
+
| 0.0851 | 10.96 | 17000 | 0.1733 | 0.0958 |
|
86 |
+
| 0.076 | 11.28 | 17500 | 0.1682 | 0.0954 |
|
87 |
+
| 0.0712 | 11.61 | 18000 | 0.1713 | 0.0943 |
|
88 |
+
| 0.0745 | 11.93 | 18500 | 0.1662 | 0.0951 |
|
89 |
+
| 0.0864 | 12.25 | 19000 | 0.1692 | 0.0947 |
|
90 |
+
| 0.0937 | 12.57 | 19500 | 0.1624 | 0.0943 |
|
91 |
+
| 0.0915 | 12.89 | 20000 | 0.1678 | 0.0942 |
|
92 |
+
| 0.0926 | 13.22 | 20500 | 0.1641 | 0.0945 |
|
93 |
+
| 0.0912 | 13.54 | 21000 | 0.1665 | 0.0937 |
|
94 |
+
| 0.0917 | 13.86 | 21500 | 0.1648 | 0.0936 |
|
95 |
+
| 0.094 | 14.18 | 22000 | 0.1635 | 0.0935 |
|
96 |
+
| 0.0864 | 14.51 | 22500 | 0.1678 | 0.0934 |
|
97 |
+
| 0.0899 | 14.83 | 23000 | 0.1663 | 0.0932 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.17.0.dev0
|
103 |
+
- Pytorch 1.10.2+cu113
|
104 |
+
- Datasets 1.18.4.dev0
|
105 |
+
- Tokenizers 0.11.0
|
wandb/run-20220208_002217-138c86e3/files/output.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55c39ebc157eb864999914b6d72b9f6ba259a47bdac42fca0eed801f95783f29
|
3 |
+
size 16752141
|
wandb/run-20220208_002217-138c86e3/logs/debug-internal.log
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6df2ae69aab690e77a827cf0fcc1db173a98eba215855932a5fa9444dedab13d
|
3 |
+
size 7567112
|
wandb/run-20220208_002217-138c86e3/run-138c86e3.wandb
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:376ebf6b85b281548b50f549897f0decdf38f315399edb80c52da7bab2ccdc8a
|
3 |
+
size 197260009
|