Update code.txt
Browse files
code.txt
CHANGED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
import detectron2
|
3 |
+
except:
|
4 |
+
import os
|
5 |
+
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
6 |
+
|
7 |
+
from matplotlib.pyplot import axis
|
8 |
+
import gradio as gr
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
from torch import nn
|
12 |
+
import requests
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import detectron2
|
16 |
+
from detectron2 import model_zoo
|
17 |
+
from detectron2.engine import DefaultPredictor
|
18 |
+
from detectron2.config import get_cfg
|
19 |
+
from detectron2.utils.visualizer import Visualizer
|
20 |
+
from detectron2.data import MetadataCatalog
|
21 |
+
from detectron2.utils.visualizer import ColorMode
|
22 |
+
|
23 |
+
damage_model_path = 'damage/model_final.pth'
|
24 |
+
scratch_model_path = 'scratch/model_final.pth'
|
25 |
+
parts_model_path = 'parts/model_final.pth'
|
26 |
+
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
device = 'cuda'
|
29 |
+
else:
|
30 |
+
device = 'cpu'
|
31 |
+
|
32 |
+
cfg_scratches = get_cfg()
|
33 |
+
cfg_scratches.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
34 |
+
cfg_scratches.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8
|
35 |
+
cfg_scratches.MODEL.ROI_HEADS.NUM_CLASSES = 1
|
36 |
+
cfg_scratches.MODEL.WEIGHTS = scratch_model_path
|
37 |
+
cfg_scratches.MODEL.DEVICE = device
|
38 |
+
|
39 |
+
predictor_scratches = DefaultPredictor(cfg_scratches)
|
40 |
+
|
41 |
+
metadata_scratch = MetadataCatalog.get("car_dataset_val")
|
42 |
+
metadata_scratch.thing_classes = ["scratch"]
|
43 |
+
|
44 |
+
cfg_damage = get_cfg()
|
45 |
+
cfg_damage.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
46 |
+
cfg_damage.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
|
47 |
+
cfg_damage.MODEL.ROI_HEADS.NUM_CLASSES = 1
|
48 |
+
cfg_damage.MODEL.WEIGHTS = damage_model_path
|
49 |
+
cfg_damage.MODEL.DEVICE = device
|
50 |
+
|
51 |
+
predictor_damage = DefaultPredictor(cfg_damage)
|
52 |
+
|
53 |
+
metadata_damage = MetadataCatalog.get("car_damage_dataset_val")
|
54 |
+
metadata_damage.thing_classes = ["damage"]
|
55 |
+
|
56 |
+
cfg_parts = get_cfg()
|
57 |
+
cfg_parts.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
|
58 |
+
cfg_parts.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
|
59 |
+
cfg_parts.MODEL.ROI_HEADS.NUM_CLASSES = 19
|
60 |
+
cfg_parts.MODEL.WEIGHTS = parts_model_path
|
61 |
+
cfg_parts.MODEL.DEVICE = device
|
62 |
+
|
63 |
+
predictor_parts = DefaultPredictor(cfg_parts)
|
64 |
+
|
65 |
+
metadata_parts = MetadataCatalog.get("car_parts_dataset_val")
|
66 |
+
metadata_parts.thing_classes = ['_background_',
|
67 |
+
'back_bumper',
|
68 |
+
'back_glass',
|
69 |
+
'back_left_door',
|
70 |
+
'back_left_light',
|
71 |
+
'back_right_door',
|
72 |
+
'back_right_light',
|
73 |
+
'front_bumper',
|
74 |
+
'front_glass',
|
75 |
+
'front_left_door',
|
76 |
+
'front_left_light',
|
77 |
+
'front_right_door',
|
78 |
+
'front_right_light',
|
79 |
+
'hood',
|
80 |
+
'left_mirror',
|
81 |
+
'right_mirror',
|
82 |
+
'tailgate',
|
83 |
+
'trunk',
|
84 |
+
'wheel']
|
85 |
+
|
86 |
+
def merge_segment(pred_segm):
|
87 |
+
merge_dict = {}
|
88 |
+
for i in range(len(pred_segm)):
|
89 |
+
merge_dict[i] = []
|
90 |
+
for j in range(i+1,len(pred_segm)):
|
91 |
+
if torch.sum(pred_segm[i]*pred_segm[j])>0:
|
92 |
+
merge_dict[i].append(j)
|
93 |
+
|
94 |
+
to_delete = []
|
95 |
+
for key in merge_dict:
|
96 |
+
for element in merge_dict[key]:
|
97 |
+
to_delete.append(element)
|
98 |
+
|
99 |
+
for element in to_delete:
|
100 |
+
merge_dict.pop(element,None)
|
101 |
+
|
102 |
+
empty_delete = []
|
103 |
+
for key in merge_dict:
|
104 |
+
if merge_dict[key] == []:
|
105 |
+
empty_delete.append(key)
|
106 |
+
|
107 |
+
for element in empty_delete:
|
108 |
+
merge_dict.pop(element,None)
|
109 |
+
|
110 |
+
for key in merge_dict:
|
111 |
+
for element in merge_dict[key]:
|
112 |
+
pred_segm[key]+=pred_segm[element]
|
113 |
+
|
114 |
+
except_elem = list(set(to_delete))
|
115 |
+
|
116 |
+
new_indexes = list(range(len(pred_segm)))
|
117 |
+
for elem in except_elem:
|
118 |
+
new_indexes.remove(elem)
|
119 |
+
|
120 |
+
return pred_segm[new_indexes]
|
121 |
+
|
122 |
+
|
123 |
+
def inference(image):
|
124 |
+
img = np.array(image)
|
125 |
+
outputs_damage = predictor_damage(img)
|
126 |
+
outputs_parts = predictor_parts(img)
|
127 |
+
outputs_scratch = predictor_scratches(img)
|
128 |
+
out_dict = outputs_damage["instances"].to("cpu").get_fields()
|
129 |
+
merged_damage_masks = merge_segment(out_dict['pred_masks'])
|
130 |
+
scratch_data = outputs_scratch["instances"].get_fields()
|
131 |
+
scratch_masks = scratch_data['pred_masks']
|
132 |
+
damage_data = outputs_damage["instances"].get_fields()
|
133 |
+
damage_masks = damage_data['pred_masks']
|
134 |
+
parts_data = outputs_parts["instances"].get_fields()
|
135 |
+
parts_masks = parts_data['pred_masks']
|
136 |
+
parts_classes = parts_data['pred_classes']
|
137 |
+
new_inst = detectron2.structures.Instances((1024,1024))
|
138 |
+
new_inst.set('pred_masks',merge_segment(out_dict['pred_masks']))
|
139 |
+
|
140 |
+
parts_damage_dict = {}
|
141 |
+
parts_list_damages = []
|
142 |
+
for part in parts_classes:
|
143 |
+
parts_damage_dict[metadata_parts.thing_classes[part]] = []
|
144 |
+
for mask in scratch_masks:
|
145 |
+
for i in range(len(parts_masks)):
|
146 |
+
if torch.sum(parts_masks[i]*mask)>0:
|
147 |
+
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('scratch')
|
148 |
+
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
|
149 |
+
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has scratch')
|
150 |
+
for mask in merged_damage_masks:
|
151 |
+
for i in range(len(parts_masks)):
|
152 |
+
if torch.sum(parts_masks[i]*mask)>0:
|
153 |
+
parts_damage_dict[metadata_parts.thing_classes[parts_classes[i]]].append('damage')
|
154 |
+
parts_list_damages.append(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
|
155 |
+
print(f'{metadata_parts.thing_classes[parts_classes[i]]} has damage')
|
156 |
+
|
157 |
+
v_d = Visualizer(img[:, :, ::-1],
|
158 |
+
metadata=metadata_damage,
|
159 |
+
scale=0.5,
|
160 |
+
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
161 |
+
)
|
162 |
+
#v_d = Visualizer(img,scale=1.2)
|
163 |
+
#print(outputs["instances"].to('cpu'))
|
164 |
+
out_d = v_d.draw_instance_predictions(new_inst)
|
165 |
+
img1 = out_d.get_image()[:, :, ::-1]
|
166 |
+
|
167 |
+
v_s = Visualizer(img[:, :, ::-1],
|
168 |
+
metadata=metadata_scratch,
|
169 |
+
scale=0.5,
|
170 |
+
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
171 |
+
)
|
172 |
+
#v_s = Visualizer(img,scale=1.2)
|
173 |
+
out_s = v_s.draw_instance_predictions(outputs_scratch["instances"])
|
174 |
+
img2 = out_s.get_image()[:, :, ::-1]
|
175 |
+
|
176 |
+
v_p = Visualizer(img[:, :, ::-1],
|
177 |
+
metadata=metadata_parts,
|
178 |
+
scale=0.5,
|
179 |
+
instance_mode=ColorMode.SEGMENTATION # remove the colors of unsegmented pixels. This option is only available for segmentation models
|
180 |
+
)
|
181 |
+
#v_p = Visualizer(img,scale=1.2)
|
182 |
+
out_p = v_p.draw_instance_predictions(outputs_parts["instances"])
|
183 |
+
img3 = out_p.get_image()[:, :, ::-1]
|
184 |
+
|
185 |
+
return img1, img2, img3, parts_list_damages
|
186 |
+
|
187 |
+
with gr.Blocks() as demo:
|
188 |
+
with gr.Row():
|
189 |
+
with gr.Column():
|
190 |
+
gr.Markdown("## Inputs")
|
191 |
+
image = gr.Image(type="pil",label="Input")
|
192 |
+
submit_button = gr.Button(value="Submit", label="Submit")
|
193 |
+
with gr.Column():
|
194 |
+
gr.Markdown("## Outputs")
|
195 |
+
with gr.Tab('Image of damages'):
|
196 |
+
im1 = gr.Image(type='numpy',label='Image of damages')
|
197 |
+
with gr.Tab('Image of scratches'):
|
198 |
+
im2 = gr.Image(type='numpy',label='Image of scratches')
|
199 |
+
with gr.Tab('Image of parts'):
|
200 |
+
im3 = gr.Image(type='numpy',label='Image of car parts')
|
201 |
+
with gr.Tab('Information about damaged parts'):
|
202 |
+
intersections = gr.Textbox(label='Information about type of damages on each part')
|
203 |
+
|
204 |
+
#actions
|
205 |
+
submit_button.click(
|
206 |
+
fn=inference,
|
207 |
+
inputs = [image],
|
208 |
+
outputs = [im1,im2,im3,intersections]
|
209 |
+
)
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
demo.launch()
|