Update onnx_time_Inferance.js
Browse files- onnx_time_Inferance.js +62 -45
onnx_time_Inferance.js
CHANGED
@@ -1,18 +1,24 @@
|
|
1 |
-
import React, {
|
2 |
-
import Webcam from 'react-webcam';
|
3 |
import * as ort from 'onnxruntime-web';
|
4 |
|
5 |
function ObjectDetection() {
|
6 |
const [averageTime, setAverageTime] = useState(null);
|
7 |
const [loading, setLoading] = useState(false);
|
8 |
-
const
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
const runBenchmark = async () => {
|
11 |
-
if (
|
12 |
-
|
|
|
|
|
13 |
|
|
|
14 |
const repetitions = 50;
|
15 |
-
const imageCount = 10;
|
16 |
let totalInferenceTime = 0;
|
17 |
|
18 |
try {
|
@@ -22,15 +28,12 @@ function ObjectDetection() {
|
|
22 |
for (let rep = 0; rep < repetitions; rep++) {
|
23 |
console.log(`Repetition ${rep + 1} of ${repetitions}`);
|
24 |
|
25 |
-
//
|
26 |
-
for (
|
27 |
const startTime = performance.now();
|
28 |
|
29 |
-
//
|
30 |
-
const
|
31 |
-
|
32 |
-
// Preprocess the image
|
33 |
-
const inputTensor = await preprocessImage(imageSrc);
|
34 |
|
35 |
// Define model input
|
36 |
const feeds = { input: inputTensor };
|
@@ -43,7 +46,7 @@ function ObjectDetection() {
|
|
43 |
}
|
44 |
}
|
45 |
|
46 |
-
const avgInferenceTime = totalInferenceTime / (repetitions *
|
47 |
setAverageTime(avgInferenceTime);
|
48 |
} catch (error) {
|
49 |
console.error('Error running inference:', error);
|
@@ -52,51 +55,58 @@ function ObjectDetection() {
|
|
52 |
setLoading(false);
|
53 |
};
|
54 |
|
55 |
-
const preprocessImage = async (
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
canvas.width = modelInputWidth;
|
67 |
-
canvas.height = modelInputHeight;
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
|
73 |
-
|
74 |
-
const rgbData = new Uint8Array((imageData.data.length / 4) * 3); // 3 channels for RGB
|
75 |
-
for (let i = 0, j = 0; i < imageData.data.length; i += 4) {
|
76 |
-
rgbData[j++] = imageData.data[i]; // R
|
77 |
-
rgbData[j++] = imageData.data[i + 1]; // G
|
78 |
-
rgbData[j++] = imageData.data[i + 2]; // B
|
79 |
-
// Skip A (alpha) channel
|
80 |
-
}
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
};
|
85 |
|
86 |
return React.createElement(
|
87 |
'div',
|
88 |
null,
|
89 |
-
React.createElement('h1', null, 'Object Detection Benchmark'),
|
90 |
-
React.createElement(
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
height: 320,
|
96 |
}),
|
97 |
React.createElement(
|
98 |
'button',
|
99 |
-
{ onClick: runBenchmark, disabled: loading },
|
100 |
loading ? 'Running Benchmark...' : 'Start Benchmark'
|
101 |
),
|
102 |
React.createElement(
|
@@ -109,6 +119,13 @@ function ObjectDetection() {
|
|
109 |
`Average Inference Time: ${averageTime.toFixed(2)} ms`
|
110 |
)
|
111 |
: null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
);
|
114 |
}
|
|
|
1 |
+
import React, { useState } from 'react';
|
|
|
2 |
import * as ort from 'onnxruntime-web';
|
3 |
|
4 |
function ObjectDetection() {
|
5 |
const [averageTime, setAverageTime] = useState(null);
|
6 |
const [loading, setLoading] = useState(false);
|
7 |
+
const [images, setImages] = useState([]);
|
8 |
+
|
9 |
+
const handleFileChange = (event) => {
|
10 |
+
const files = Array.from(event.target.files);
|
11 |
+
setImages(files.slice(0, 10)); // Limit to the first 10 images
|
12 |
+
};
|
13 |
|
14 |
const runBenchmark = async () => {
|
15 |
+
if (images.length === 0) {
|
16 |
+
alert('Please upload 10 images.');
|
17 |
+
return;
|
18 |
+
}
|
19 |
|
20 |
+
setLoading(true);
|
21 |
const repetitions = 50;
|
|
|
22 |
let totalInferenceTime = 0;
|
23 |
|
24 |
try {
|
|
|
28 |
for (let rep = 0; rep < repetitions; rep++) {
|
29 |
console.log(`Repetition ${rep + 1} of ${repetitions}`);
|
30 |
|
31 |
+
// Process each image
|
32 |
+
for (const imageFile of images) {
|
33 |
const startTime = performance.now();
|
34 |
|
35 |
+
// Convert image to tensor
|
36 |
+
const inputTensor = await preprocessImage(imageFile);
|
|
|
|
|
|
|
37 |
|
38 |
// Define model input
|
39 |
const feeds = { input: inputTensor };
|
|
|
46 |
}
|
47 |
}
|
48 |
|
49 |
+
const avgInferenceTime = totalInferenceTime / (repetitions * images.length);
|
50 |
setAverageTime(avgInferenceTime);
|
51 |
} catch (error) {
|
52 |
console.error('Error running inference:', error);
|
|
|
55 |
setLoading(false);
|
56 |
};
|
57 |
|
58 |
+
const preprocessImage = async (imageFile) => {
|
59 |
+
return new Promise((resolve) => {
|
60 |
+
const img = new Image();
|
61 |
+
const reader = new FileReader();
|
62 |
|
63 |
+
reader.onload = () => {
|
64 |
+
img.src = reader.result;
|
65 |
+
};
|
66 |
|
67 |
+
img.onload = () => {
|
68 |
+
const canvas = document.createElement('canvas');
|
69 |
+
const context = canvas.getContext('2d');
|
|
|
|
|
70 |
|
71 |
+
// Resize to model input size
|
72 |
+
const modelInputWidth = 320; // Replace with your model's input width
|
73 |
+
const modelInputHeight = 320; // Replace with your model's input height
|
74 |
+
canvas.width = modelInputWidth;
|
75 |
+
canvas.height = modelInputHeight;
|
76 |
|
77 |
+
context.drawImage(img, 0, 0, modelInputWidth, modelInputHeight);
|
78 |
|
79 |
+
const imageData = context.getImageData(0, 0, modelInputWidth, modelInputHeight);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
// Convert RGBA to RGB
|
82 |
+
const rgbData = new Uint8Array((imageData.data.length / 4) * 3); // 3 channels for RGB
|
83 |
+
for (let i = 0, j = 0; i < imageData.data.length; i += 4) {
|
84 |
+
rgbData[j++] = imageData.data[i]; // R
|
85 |
+
rgbData[j++] = imageData.data[i + 1]; // G
|
86 |
+
rgbData[j++] = imageData.data[i + 2]; // B
|
87 |
+
}
|
88 |
+
|
89 |
+
// Create a tensor with shape [1, 320, 320, 3]
|
90 |
+
resolve(new ort.Tensor('uint8', rgbData, [1, modelInputHeight, modelInputWidth, 3]));
|
91 |
+
};
|
92 |
+
|
93 |
+
reader.readAsDataURL(imageFile);
|
94 |
+
});
|
95 |
};
|
96 |
|
97 |
return React.createElement(
|
98 |
'div',
|
99 |
null,
|
100 |
+
React.createElement('h1', null, 'Object Detection Benchmark (Local Images)'),
|
101 |
+
React.createElement('input', {
|
102 |
+
type: 'file',
|
103 |
+
multiple: true,
|
104 |
+
accept: 'image/*',
|
105 |
+
onChange: handleFileChange,
|
|
|
106 |
}),
|
107 |
React.createElement(
|
108 |
'button',
|
109 |
+
{ onClick: runBenchmark, disabled: loading || images.length === 0 },
|
110 |
loading ? 'Running Benchmark...' : 'Start Benchmark'
|
111 |
),
|
112 |
React.createElement(
|
|
|
119 |
`Average Inference Time: ${averageTime.toFixed(2)} ms`
|
120 |
)
|
121 |
: null
|
122 |
+
),
|
123 |
+
React.createElement(
|
124 |
+
'ul',
|
125 |
+
null,
|
126 |
+
images.map((img, index) =>
|
127 |
+
React.createElement('li', { key: index }, img.name)
|
128 |
+
)
|
129 |
)
|
130 |
);
|
131 |
}
|