Update code.txt
Browse files
code.txt
CHANGED
@@ -259,4 +259,69 @@ function ObjectDetector() {
|
|
259 |
|
260 |
export default ObjectDetector;
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
|
|
259 |
|
260 |
export default ObjectDetector;
|
261 |
|
262 |
+
|
263 |
+
|
264 |
+
import json
|
265 |
+
import random
|
266 |
+
import os
|
267 |
+
|
268 |
+
# Load the COCO annotations file
|
269 |
+
coco_file = 'annotations.json' # Path to your COCO annotations file
|
270 |
+
output_dir = 'output_dir/' # Directory to save the split files
|
271 |
+
train_ratio = 0.8 # 80% for training, 20% for validation
|
272 |
+
|
273 |
+
# Create output directory if it doesn't exist
|
274 |
+
if not os.path.exists(output_dir):
|
275 |
+
os.makedirs(output_dir)
|
276 |
+
|
277 |
+
# Load COCO annotations
|
278 |
+
with open(coco_file, 'r') as f:
|
279 |
+
coco_data = json.load(f)
|
280 |
+
|
281 |
+
# Extract images and annotations
|
282 |
+
images = coco_data['images']
|
283 |
+
annotations = coco_data['annotations']
|
284 |
+
|
285 |
+
# Shuffle images to ensure random split
|
286 |
+
random.shuffle(images)
|
287 |
+
|
288 |
+
# Split images into training and validation sets
|
289 |
+
train_size = int(len(images) * train_ratio)
|
290 |
+
train_images = images[:train_size]
|
291 |
+
val_images = images[train_size:]
|
292 |
+
|
293 |
+
# Create dictionaries to store image IDs for filtering annotations
|
294 |
+
train_image_ids = {img['id'] for img in train_images}
|
295 |
+
val_image_ids = {img['id'] for img in val_images}
|
296 |
+
|
297 |
+
# Split annotations based on image IDs
|
298 |
+
train_annotations = [ann for ann in annotations if ann['image_id'] in train_image_ids]
|
299 |
+
val_annotations = [ann for ann in annotations if ann['image_id'] in val_image_ids]
|
300 |
+
|
301 |
+
# Create train and validation splits for COCO format
|
302 |
+
train_data = {
|
303 |
+
'images': train_images,
|
304 |
+
'annotations': train_annotations,
|
305 |
+
'categories': coco_data['categories'], # Keep categories the same
|
306 |
+
}
|
307 |
+
|
308 |
+
val_data = {
|
309 |
+
'images': val_images,
|
310 |
+
'annotations': val_annotations,
|
311 |
+
'categories': coco_data['categories'], # Keep categories the same
|
312 |
+
}
|
313 |
+
|
314 |
+
# Save the new train and validation annotation files
|
315 |
+
train_file = os.path.join(output_dir, 'train_annotations.json')
|
316 |
+
val_file = os.path.join(output_dir, 'val_annotations.json')
|
317 |
+
|
318 |
+
with open(train_file, 'w') as f:
|
319 |
+
json.dump(train_data, f)
|
320 |
+
|
321 |
+
with open(val_file, 'w') as f:
|
322 |
+
json.dump(val_data, f)
|
323 |
+
|
324 |
+
print(f"Train annotations saved to: {train_file}")
|
325 |
+
print(f"Validation annotations saved to: {val_file}")
|
326 |
+
|
327 |
|